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Today's Talk

Let S be a scheme, 4/S a set of properties of S-schemes, and
Schy s the full subcategory of Sch g determined by
the objects X € Schy /g that satisfy every property of 4/S.

In this talk, I will explain how to reconstruct S from Schy/g.
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Notations and Conventions

S : Scheme
#/S :a set of properties of S-schemes

the full subcategory of Sch,g determined by
SCh’/S :

the objects X € Schy /g that satisfy every property of /S
x, lim : the fiber product, limit in Sch

x*,1im* : the fiber product, limit in Schy /s

In the present talk, we shall mainly be concerned with the properties

¢ C {red, qcpt, gsep, sep} .

3/30



Previous Research

Mochizuki 2004 : /S =1t./S, S: locally Noetherian
(+ log scheme version)

van Dobben de Bruyn 2019 : ¢ = @, S: arbitrary
Wakabayashi 2010 : superscheme version of the case of Mochizuki

Anabelian Geometry 1 4/S =fét/S

These research and my research are motivated by anabelian geometry.
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Main Theorem

(1) S: locally Noetherian normal scheme, ¢ C {red, qcpt, gsep, sep} .
Then the following may be reconstructed category-theoretically from
SCh’/SZ
(a) the structure of T" as a scheme (for every object T' € Schys),
(b) the structure of f as a morphism of schemes (for every morphism

(f : X = Y) € Schys).

(2) S,T: quasi-separated,

4.0 C {red, qcpt, gsep, sep} s.t. {qsep,sep} ¢ ¢, {qsep,sep} Z O
Then, Sch,/S = SchO/T = ¢=93.

(3) S,T: locally Noetherian normal schemes, 4 C {red, qcpt, gsep, sep}.
Then, the following natural functor is equivalent:

Isom(S,T') — Isom(Schy 7, Schy/g)
fe=f
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~
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Since a scheme is constructed by
e the underlying set,
e the underlying topological space, and
e the structure sheaf,

to reconstruct a scheme,
it suffices to reconstruct these structures.

In the present talk,

| explain how to reconstruct the underlying sets, and

give category-theoretic characterizations of various properties used to
reconstruct the underlying topological spaces and the structure sheaves.
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Remark: the Fiber Product in Schy /g

Lemma
[:Y = X,9:Z — X : morphisms in Schy/s.
Suppose that either f or g is quasi-compact.

Then, the fiber product Y xg( Z in Schy /g exists,
and the following assertions hold:

Ifred ¢ #, then Y x% Z 2V xx Z.
If red € ¢, then Y x& Z = (Y Xx Z)reqd

In particular, Y xXx Z and Y ><§< Z have same underlying top.
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An ldea to Reconstruct the Underlying Sets

A point x € X may be determined by

f:Y = X st. |[Y]|: 1pt. set, and Im(f) = {z}.
Hence,

giving a point of X <=
giving a certein equivalence class of f: Y — X s.it. |Y]: 1pt. set.

To reconstruct the underlying set, it suffices to characterize
one-pointed schemes (i.e., schemes whose underlying sets are 1pt. sets)

cat.-theoretically.
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Characterization of the One-Pointed Schemes

Let X € SCh’/S.

Characterization of the 1pt. Scheme

| X| is not 1pt. set <=
W, 240, X, Z+X st. Yx¢Z=0

X has two distinct pts. 1,22 = Spec(k(z1)) ><§( Spec(k(z2)) = @.
X satisfies the condition = y € Y, 2 € Z determine two distinct pts. of X.
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Reconstruction of the Underlying Set 1

Let X € Schy/s. We define

Pty/s(X) =4 {(pz:Z — X) € Schy/s | |Z]: 1pt. set} / ~,

where

def,
(pz:Z—= X)~ (pz: Z' = X) & ZXZ:LXJ’Z’

7'+ @.

Reconstruction of the Underlying Set

Pty s : Schy /s — Set is naturally isomorphic to the functor

Ug?g : SCh’/S — Set.
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Reconstruction of the Underlying Set 2

Since the functor Pty /g is defined category-theoretically, the following
corollary holds:

Corollary

If F: Schy/g — Schyr is an equivalence, then Uf’?g = Ug?} oF.

SCh’/S —E——> SChO/T

Set Set
| | w8

Set ——— Set.
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Regular Monomorphisms

C: category, (f: X = Y) eC.

Definition

f is a regular monomorphism
e dg,h: Y — Z, s.t., f is the equalizer of (g, h).

Property of reg. mono. in Schy/s

S:qs., (f: X =Y) €Schy/s: reg. mono. = f: immersion.

) f: reg. mono. = f: b.c. of the diagonal (details omitted).

Corollary (Cat.-Theoretic Characterization of Red. Schemes)

X €Schy/gisred. <= [f:Y — X: surj. reg. mono. = f: isom ]

*) a surj. reg. mono. is a surj. closed immersion.
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Closed Immersions

Closed immersions may be characterized as follows:

Characterization of Closed Immersions
S:qgs., (f: X =Y) €Schys.
f: closed immersion if and only if

e f: reg. mono.
o V(T —Y), thebc Xor =X x$ T exists.

o V(I' = Y), VteT: closed pt. st. t  Im(for: Xe7 = T),
Xo,1 ][ Spec(k(t)) — T: reg. mono.

Hence to give a cat.-theoretic characterization of closed immersions,
it suffices to characterize the closed pt.
In particular, it suffices to characterize the relation 1 ~> xo.
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Strongly Local 1

S: q.s., X € Schy/g, z1,722 € X.

Definition (Strongly Local)

(X, z1,22) is strongly local in Schy /g et
e X: connected.
o V(f:Z — X): reg. mono., [x1,z2 € Im(f),= f: isom.].
o Spec(k(z1)) [[Spec(k(z2)) — X: epi.
e Spec(k(z1)) — X: reg. mono.
o V(f:Z — X): reg. mono.,
[z1 & Im(f),Z # @ = Z]]Spec(k(x1)) — X: not a reg. mono.].

The property that (X, z;,z9) is strongly local is defined cat.-theoretically
from the data (Schy /g, X, 21, 22).
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Strongly Local 2

S: q.s., X € Schy/g, 21,72 € X.

Properties of Strongly Local Objects

If (X,x1,x2): strongly local, then
(1) X = Spec(local domain)
(2) One of 1,2 is the closed pt., and the other is the generic pt.

In particular, z1 ~» xo or X9 ~> x7.

Let V' = Spec(valuation ring), v € V: closed pt., n € V: generic pt.

Proposition (Spec. of Valuation Rings are Strongly Local)

(V,v,n): strongly local.
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Cat.-Theoretic Characterization of “z1 ~» x9 or x5 ~ 21"

S: q.s., X € Schy/g, z1,722 € X.

Cat.-Theoretic Characterization of “x; ~ x5 or Ty ~» 21" .

1~ 9 OF Ty v 11" —
17 € SCh’/S,Hzl,Zz € Z,H(f 4 — X) € SCh./S, s.t.,
(Z,z1,22): str. loc., and {f(21), f(22)} = {z1, 22}

By using the above characterization,
we can characterize the relation z1 ~~ 25 (details omitted).

(1) Closed immersions may be characterized cat.-theoretically.

(2) Underlying top. may be reconstructed cat.-theoretically.

In particular, top.-theoretic properties of schemes (or morphisms)

may be characterized cat.-theoretically

(ex: g.s., q.c., sep., irred., local (= Spec(local ring)), open imm., univ.
closed, etc.). 16 /30



Reconstruction of the Underlying Top.

(Similarly to the case of Set)
VE : Schy/s = Schy,r, the following diagram commutes (up to isom.):

Sch./s —N——) SChO/T
Ui |vim

To p _— To P
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An Observation

To reconstruct the structure sheaf of X € Sch./s,
it suffices to characterize the ring scheme AL — X cat.-theoretically.

Since Al is f.p. over a base scheme,
we want to get a cat.-theoretic characterization of f.p. morphisms.

f.p./S = a “compact object” in Sc /s

More precisely,
X =5 fp =
V(Vx, fap)aea: diagram in Sch g s.t.
A: cofiltered, V: affine,
the following natural map is surj. :
@ (;\(E)ljigrgHomsch/S(V)\,X) — Homsep (lirélA‘ Wy, X).
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Locally of Finite Presentation Morphisms 1

S:qs., (f: X =Y) €Schyg, z € X.

Proposition

ff : Oy, f(z) = Ox 2 essentially of finite presentation <=
V(Vx, fap)aea: diagram in Schy /v s.t.

A: cofiltered, Vy: local, fy,(closed pt.) = f(x),

the following natural map is surjective :

. g EN
@ (i(e)l/{gpl Homsch’/Y(V,\,X) — Homsch‘/y(l}\glA W, X).

') f.p. schemes (over Y') are cpt. objects in Sch/y (details omitted).
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Locally of Finite Presentation Morphisms 2

S:qs., (f: X =Y) €Schyg.

Cat.-Theoretic Characterization of Loc.F.P. Morphisms
filoc. of fp. <—

o Vx e X, ff : Oy,f(z) = Ox: essentially of finite presentation.
o YV(Z —=Y),Vz e Z, the following natural map is bijective :

¢, x : colim Hom

o (W, X) — Homseh, ,, ( lim* W, X),

Sch
ey Welz(z)

where Iz(z) & {iw : W — Z | itw: open imm., z € Im(iw)}.

") f.p. schemes (over Y') are cpt. objects in Schy (details composited).
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List of Cat.-Theoretic Properties

S: q.s.
VX e Sch‘/S, | X'| has been reconstructed cat.-theoretically, and

the following scheme-theoretic properties have been characterized
cat.-theoretically:

e red., irred., integral, q.c., = Spec(local ring), = Spec(field).
e g.c., g.S., sep., imm., closed imm., open imm., loc. of f.p., f.p., f.p. +
proper (= sep.+ f.p.+ univ. closed).

The following properties have not given yet cat.-theoretic characterizations:

flat, smooth, étale, etc. J
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An ldea to Reconstruct the Structure Sheaves

To reconstruct the structure sheaf of X € Schy g,

it suffices to characterize the ring scheme A} — X cat.-theoretically.
Since AL, = PL \ {oo},

it suffices to characterize P} — X cat.-theoretically.

What to Do
Give a cat.-theoretic characterizaion of P!.
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The Case where X = Spec(k)

e proper over Spec(k)
P; <= { e the residue field of the generic pt. = k(%)
e “Closest” to Spec(k(t))

.. it suffices to characterize Spec(k(t)) — Spec(k).
Idea: Liiroth's theorem.

Cat.-Theoretic Characterization of k(t)/k

f:Y — Spec(k): isom. to Spec(k(t)) — Spec(k) over Spec(k) <~
e JK :field , Y = Spec(K)
e f: not f.p. (< K/k: not a finite extension)
e k CVL C K, Jisom. K = L over k (Liiroth's theorem).

~~ We obtain a cat.-theoretic characterization of P; — Spec(k).
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An ldea in the Case of General Base Scheme 1

To characterize P}, — X,
it suffices to characterize Py € Schys.
Since

PL <= Pl-bundle/S + 3 3 sections s1, 52,53 s.t. 8;Ns; =&, (i £ j), J

it suffices to characterize the P -bundle over S.
~» P-bundle = each fiber is P!.

e If red € ¢, then cat.-theoretic fiber 22 scheme-theoretic fiber.

e A generic fiber may be presented by a limit of open immersions.
~~ cat.-theoretic generic fiber = scheme-theoretic generic fiber.
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An ldea in the Case of General Base Scheme 2

Al = P!\ {oo} has a ring scheme structure:

Observation

1-dim ring scheme = A! 7?7

Lemma (Mhd&)
R: DVR, vV :&f Spec R, K 4ef Frac(R) f: X — V: flat ring scheme /V.
If f satisfies the following conditions, then X = A%, and f is the proj.:

e The special fiber of f is connected and 1-dim.

e The generic fiber of f is A}

A\

Without connectedness of the special fiber, there is a counterexample:
Spec(R|[z, (aP” — zP) /7).
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The Case of General Base Scheme

S: locally Noetherian normal, ¢ = ¢ U {red}, (f : X — S) € Schy/s.
f is isom. to P}g — S <= f satisfies the following conditions:
(1) f: f.p. proper.
(2) Vse S, f7i(s )red%]P’l()
(3) Vgenericpt. n € S, f1(n) = Pl( )
(4) 3so, 51, 500 sections of fst. s;Ns; =T, (i # j).
(5) Vi =0,1,00, 3 a ring structure on X \ s; over S in Schy/g s.t.
s;: add. unit, s;: mult. unit, and {7, j,k} = {0,1, 00}.
(6) (9:Y — S) €Schy/s, to,t1,te0: sections, s.t. satisfy (1),...,(5),
= dlh: X = Y: closed imm. s.t. Vi =0,1,00,f =goh,hos; =t;.

26 / 30



Proof

If P! satisfies (6), then by the uniqueness of (6), “<": ok.
. It suffices to prove “=" (i.e., Pk satisfies (6)).
Y satisfies (1),...,(5). We define

C : Sch?®

/s Set,

(T—>S)n—>{z’:]P’1T—>YT

7: closed imm.,
0,1,00 — to, t1,teo |

Then,
e (" algebraic space /S.
e by (2), each fiber of C' — S is a 1-pt. set.
e by (3), C — S is birational.

What to Prove
C(S): 1-pt. set.
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W 2 Spec(DVR).

VW = S), (YW )red \ ti,w: flat ring scheme /.
oo VW, C(W): 1-pt. set (= C'is a scheme).

By lemma (M&®) and a valuative criterion,

C — S: proper birat. bij. (= finite).

Since S is normal, Cyeq = S (by ZMT).

In particular, C(S): 1-pt. set.
~ Q.E.D.
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The Main Result

(Similarly to the case of Set, Top)
VE : Schy/s = Schyr: equiv.,
the following diagram commutes (up to isom.):

SCh‘/S — SChQ/T
Uic/hSl lUgc/hT
SCh — SCh
Moreover, the following equiv. holds:

Isom(S,T) = Isom(Schy 7, Schy/s).

29 /30



Related Works

| also confirmed that the following problem has been solved:
e Reconstructing a Noetherian scheme S from the category of finite
S-schemes.

Since we may consider many properties of schemes,
there are many cat.-theoretic reconstruction problems.

Thank you for your attention.
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