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これは接続に関する基礎事項を jetバンドル (のような何か) を用いて線形に書き直したノートである。

1 スキーム論的な視点で見た jet

X が S-スキームであるときには、X ×S X の対角の r-次無限小近傍を X(r) と書き、第一、第二射影を
p, q : X(r) → X で表す。

Definition 1.1. Jr(E) :
def
= q∗p

∗E

Remark 1.2. Jr(−)という操作は函手的である。

1.1 基本的な完全系列
r-次無限小部分を 0にすることによって自然な完全列

0 −−−−→ Symr(ΩX/S)⊗ E −−−−→ Jr(E) −−−−→ Jr−1(E) −−−−→ 0

を得る。とくに r = 1とすることで完全列

0 −−−−→ ΩX/S ⊗ E −−−−→ J1(E) −−−−→ E −−−−→ 0

を得る。
後で見るように、E 上の接続とは、この (r = 1の場合の) 完全系列の分裂 E → J1(E)のことである (cf.

subsection 2.1)。

1.2 テンソル
二つのベクトル束 E1, E2 に対して、自然な射

q∗q∗p
∗Ei → p∗Ei

をテンソルすることで、射

q∗(Jr(E1)⊗OX
Jr(E2)) = q∗((q∗p

∗E1)⊗OX
(q∗p

∗E2))
∼−→ (q∗q∗p

∗E1)⊗O
X(1)

(q∗q∗p
∗E2) → p∗E1⊗O

X(1)
p∗E2 → p∗(E1⊗O

X(1)
E2)

を得る。q∗ は q∗ の右随伴であるから、射

Jr(E1)⊗OX
Jr(E2) → Jr(E1 ⊗ E2)
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を得る。この射は r を小さくすることによって得られる全射と可換であり、さらに E1, E2 について函手的で
ある。

1.3 アーベル群の層としての直和分解
p, q : X(r) → X は、下部位相空間の間の射はどちらも id|X| であるため、アーベル群の層としては

q∗(−) = p∗(−)となる。従って、アーベル群の層としては q∗p
∗E = p∗p

∗E であり、自然な全射 Jr(E) → E

のアーベル群の層としての自然な分裂 E → Jr(E)を得る。これを dr で表す。dr は OX -線形ではない。
r = 1とする。このとき、J1(E)はアーベル群として E ⊕ (ΩX ⊗ E) と直和分解する。

2 接続
Definition 2.1 (接続). M を多様体、E をベクトル束とする。E 上の接続とは、R-線形写像∇ : E → Ω⊗E

であって、任意の s ∈ E と f ∈ ON に対して ∇(fs) = df ⊗ s+ f∇(s)が成り立つもののことを言う。

2.1 Jetによる解釈

2.2 双対接続
Definition 2.2 (双対接続). ∇ : E → J1(E)を接続とする。∇は X(1) 上の層の射 ∇̃ : q∗E

∼−→ p∗E と対応
する。∇̃の双対の逆射 (∇̃∗)−1 : q∗E∗ ∼−→ p∗E∗ と対応する射 E∗ → J1(E∗)を ∇の双対接続という。

Remark 2.3.

2.3 テンソル積

2.4 計量
ベクトル束 E 上に計量を与えることは、同型射 h : E

∼−→ E∗ を与えることと等しい。

Lemma 2.4. hを E 上の計量、∇をベクトル束 E 上の接続、∇∗ を双対接続とする。∇が hと可換である
ための必要十分条件は、以下の図式が可換であることである：

E
∇−−−−→ J1(E)

h

y yJ1(h)

E∗ ∇∗

−−−−→ J1(E∗).

Proof. {ea} を局所 frame, {ea∗} をその双対 frame, h(ea) = habe
b
∗, ∇(ea) = Ab

a ⊗ eb (ここで Ab
a はこの
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frameをとっている開集合上の 1-form) とおいて計算すると、

(J1(h) ◦ ∇)(ea) = J1(h)(ea,∇(ea))

= (habe
b
∗, hbcA

b
a ⊗ ec∗),

(∇∗ ◦ h)(ea) = ∇∗(habe
b
∗)

= (habe
b
∗,∇

∗(habe
b
∗))

= (habe
b
∗, dhab ⊗ eb∗ − habA

c
b ⊗ ec∗)

となる。従って、上記の図式の可換性は dhab = habA
c
b + hbcA

b
a が成り立つことと同値であり、これは hが∇

と可換であることに他ならない。

3 J1J1

3.1 共変外微分

3.2 曲率

4 Gaussの方程式
この sectionでは、

0 −−−−→ E1
i−−−−→ E

p−−−−→ E2 −−−−→ 0

をベクトル束の完全列とし、∇ : E → J1(E) を接続とする。

4.1 第二基本形式とシェイプ作用素
Definition 4.1 (第二基本形式). S∇ :

def
= J1(p) ◦ ∇ ◦ i : E1 → J1(E2) を第二基本形式という (たんに S と

書くこともある)。

Remark 4.2. 自然な全射を pE : J1(E) → E, pE2 : J1(E2) → E2 と書くと、

pE2
◦ S = pE2

◦ J1(p) ◦ ∇ ◦ i = p ◦ pE ◦ ∇ ◦ i = p ◦ i = 0

となるので、S : E1 → J1(E2)は実際には Ω⊗ E2 ⊂ J1(E2) を一意的に経由する。

Remark 4.3. 第二基本形式は、E の計量によらない。実際、この節ではまだ E に計量が入っていることを
仮定していない。

h : E
∼−→ E∗ を E の計量とする。さらに、

• h1 :
def
= i∗ ◦ h ◦ i : E1

∼−→ E∗
1 を E1 上の誘導計量、

• h2 :
def
= (q ◦ h−1 ◦ q∗)−1 : E2

∼−→ E∗
2 を E2 上の誘導計量、

• p :
def
= h−1

1 ◦ i∗ ◦ h : E → E1 を hが定める i : E1 → E の retract、
• j :

def
= h−1 ◦ q∗ ◦ h2 : E2 → E を hが定める q : E → E2 の split

とする。このとき、定義より、h1 ◦ p = i∗ ◦ h, h ◦ j = q∗ ◦ h2 が成り立つ。
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Definition 4.4 (シェイプ作用素). A∇ :
def
= J1(p)◦∇◦j : E2 → J1(E1)をシェイプ作用素 (shape operator)

という。しばしば ∇を省略してたんに Aと書く。

Remark 4.5. 第二基本形式の場合と同様に、実際には、A : E2 → J1(E1)は Ω⊗E1 ⊂ J1(E1)を一意的に
経由する。

Proposition 4.6. S を∇の第二基本形式、Aを∇のシェイプ作用素、∇∗ : E∗ → J1(E∗)を双対接続、S∗

を ∇∗ の第二基本形式、A∗ を ∇∗ のシェイプ作用素とする。

(i) S∗ = J1(i∗) ◦ ∇∗ ◦ q∗ : E∗
2 → J1(E∗

1 ) である。
(ii) A∗ = J1(j∗) ◦ ∇∗ ◦ p∗ : E∗

1 → J1(E∗
2 ) である。

(iii) 以下の図式は可換である：
E1

S−−−−→ J1(E2)

h1

y yJ1(h2)

E∗
1

A∗

−−−−→ J1(E∗
2 ).

(iv) 以下の図式は可換である：
E2

A−−−−→ J1(E1)

h2

y yJ1(h1)

E∗
2

S∗

−−−−→ J1(E∗
1 ).

Proof. (i)と (ii)は定義より従う。(iii)を示す。計算すると、

J1(h2) ◦ S = J1(h2) ◦ J1(q) ◦ ∇ ◦ i
= J1(j∗) ◦ J1(h) ◦ ∇ ◦ i
= J1(j∗) ◦ ∇∗ ◦ h ◦ i
= J1(j∗) ◦ ∇∗ ◦ p∗ ◦ h1

= A∗ ◦ h1

となる。以上で (iii)が示された。(iv)を示す。計算すると、

J1(h1) ◦A = J1(h1) ◦ J1(p) ◦ ∇ ◦ j
= J1(i∗) ◦ J1(h) ◦ ∇ ◦ j
= J1(i∗) ◦ ∇∗ ◦ h ◦ j
= J1(i∗) ◦ ∇∗ ◦ q∗ ◦ h2

= S∗ ◦ h2

となる。以上で 4.6の証明を完了する。

Remark 4.7. Ω⊗ E1 ⊂ J1(E1)と Ω⊗ E2 ⊂ J1(E2)の成分を見れば、

h(S(e1), e2) = h(e1, A
∗(e2))

となる。
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4.2 Gaussの方程式
E 上の接続 ∇と計量 hによって定まる E1 の誘導接続を ∇⊤ :

def
= J1(p) ◦ ∇ ◦ i : E1 → J1(E1) と表す。

E 上の接続 ∇の曲率 R : E → J1(J1(E))の E1 の成分を E1 上の誘導接続 ∇⊤ の曲率 R⊤ と比較したも
のをGaussの方程式と言う。

Lemma 4.8. ∇ ◦ i = J1(i) ◦ ∇⊤ + J1(j) ◦ S.

Proof. idJ1(E) = J1(i) ◦ J1(p) + J1(j) ◦ J1(q) であるから、計算すれば

∇ ◦ i = idJ1(E) ◦∇ ◦ i
= J1(i) ◦ J1(p) ◦ ∇ ◦ i+ J1(j) ◦ J1(q) ◦ ∇ ◦ i

= J1(i) ◦ ∇⊤ + J1(j) ◦ S

となる。

Theorem 4.9 (Gaussの方程式). h2 : E2
∼−→ E∗

2 を誘導計量とする。このとき、以下の等式が成り立つ：

J1(J1(i∗)) ◦ J1(J1(h)) ◦R ◦ i = J1(S∗) ◦ J1(h2) ◦ S + J1(J1(h1)) ◦R⊤.

Proof. ∇∗ を双対接続とする。計算すると、

J1(J1(i∗)) ◦ J1(J1(h)) ◦R ◦ i
= J1(J1(i∗)) ◦ J1(J1(h)) ◦ J1(∇) ◦ ∇ ◦ i
⋆
= J1(J1(i∗)) ◦ J1(J1(h)) ◦ J1(∇) ◦ J1(i) ◦ ∇⊤ + J1(J1(i∗)) ◦ J1(J1(h)) ◦ J1(∇) ◦ J1(j) ◦ S
♠
= J1(J1(i∗)) ◦ J1(J1(h)) ◦ J1(∇) ◦ J1(i) ◦ ∇⊤ + J1(J1(i∗)) ◦ J1(∇∗) ◦ J1(h) ◦ J1(j) ◦ S
♣
= J1(J1(h1)) ◦ J1(J1(p)) ◦ J1(∇) ◦ J1(i) ◦ ∇⊤ + J1(J1(i∗)) ◦ J1(∇∗) ◦ J1(q∗) ◦ J1(h2) ◦ S

= J1(J1(h1)) ◦ J1(∇⊤) ◦ ∇⊤ + J1(S∗) ◦ J1(h1) ◦ S

= J1(J1(h1)) ◦R⊤ + J1(S∗) ◦ J1(h1) ◦ S

となる。ただし⋆の箇所で Lemma 4.8を用い、♠の箇所で Lemma 4.8を用い、♣の箇所で等式 i∗◦h = h1◦p
と h ◦ j = q∗ ◦ h2 を用いた。以上で Theorem 4.9の証明を完了する。
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