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モノイドは可換で単位元を持つとする。演算は加法で表し、単位元は 0と表記する。

定義 1. M をモノイドとする。

• 自明なモノイドを (軽微な記号の濫用により) 0と表す。
• M× :

def
= {m ∈M |∃m′ ∈M,m′ +m = 0}.

• M が sharpであるとは、M× = 0となることを言う。
• Mgp :

def
= (M ×M)/ ∼, ただし

(m1,m2) ∼ (m′
1,m

′
2) :

def⇐⇒ ∃m ∈M,m1 +m′
2 +m = m′

1 +m2 +m.

• ηM : M →Mgp を ηM (m) = (m, 0)で定める。これはM に関して函手的である。
• モノイドM が integralであるとは、ηM が単射であることを言う。
• モノイドM が pre-integralであるとは、ηM |M× : M× →Mgp が単射であることを言う。
• Mon ですべてのモノイドのなす圏、Ab ですべてのアーベル群のなす圏を表し、⊔ は Mon の中での

push-outを表す。

注意 2. Ab ⊂ Monは (−)gp を右随伴に持つ包含函手であるので、特に余極限と可換する。

補題 3. M
f←− N

g−→ L をモノイドの図式とする。P :
def
= M ⊔N L と置く (ただしこれは Mon における

push-outである)。このとき、自然な射 q : M ⊔ L→M ⊔N Lは全射である。

Proof. Q :
def
= Im(q)と置き、i : Q ↪→ P を包含射、q′ : M ⊔ L→ Qを q = i ◦ q′ となる射とする。もし q が

全射ではないとすると、push-outの普遍性より、ある r : P → Qが存在して q′ = r ◦ q が成り立つ。q′ は全
射であるから、r も全射である。また、i ◦ r ◦ q = i ◦ q′ = q であるから、push-outの普遍性より i ◦ r = idP

が成り立つ。よって rは単射でもある。従って rは同型射となり、P = Qが従う。以上で補題 3の証明を完了
する。

補題 4. M をモノイドとする。

(i) 任意のm ∈M に対し、(m,m) ∈M ×M の定める同値類 [(m,m)] ∈Mgp は 0である。
(ii) 任意のm ∈Mgp に対し、ある a, b ∈M が存在し、m+ ηM (a) = ηM (b)となる。
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(iii) 任意の a, b ∈M に対し、ηM (a) = ηM (b)であるならば、ある c ∈M が存在して a+ c = b+ cが成り
立つ。

Proof. (i)は、m+0 = 0+mであることと同値関係の定義より従う。(ii)は、m = [(b, a)]と表すことによって
m = ηM (b)−ηM (a)となるので、これから帰結する ((i)より−ηM (a) = [(0, a)]となることに注意)。(iii)は、同
値関係の定義より、[(a, 0)] = [(b, 0)]であるとすると、ある c ∈M が存在して a+c = a+0+c = 0+b+c = b+c

となるので、このことから帰結する。以上で補題 4の証明を完了する。

定義 5 (Quasi-integral). モノイドM が quasi-integralであるとは、任意の a, b ∈ M に対して、以下が成
り立つことを言う:

a+ b = a ⇒ b = 0.

補題 6. M をモノイドとする。

(i) M が quasi-integralであるための必要十分条件は、η−1
M (0) = 0となることである。

(ii) integral ⇒ quasi-integral ⇒ pre-integral.

Proof. (i)を示す。まず必要性を示す。M が quasi-integral であるとして、a ∈ M が ηM (a) = 0 を満たす
とする。このとき、ηM (a) = 0 = ηM (0) であるから、補題 4 (iii)よりある c ∈ M が存在して a + c = c と
なる。M は quasi-integralなので、a = 0が従う。以上で必要性の証明を完了する。次に十分性を証明する。
η−1
M (0) = 0であると仮定して、a, b ∈ M が a+ b = aを満たすとする。このとき、ηM (a) + ηM (b) = ηM (a)

が成り立つので、ηM (b) = 0 である。従って b ∈ η−1
M (0) = 0 となり b = 0 である。以上で(i)の証明を完了

する。
(ii)を示す。ηM が単射であれば η−1

M (0) = 0 であるから、(i)より「integral⇒quasi-integral」が従う。
ker(ηM |M×) ⊂ η−1

M (0)であるから、(i)より「quasi-integral⇒pre-integral」が従う。以上で補題 6の証明を完
了する。

補題 7. M をモノイド、P を quasi-integralなモノイドとして、f : M → P をモノイドの射とする。このと
き、自然な射 P××P M → P××P gp M は同型射である。特に、M が sharpで integralなモノイドであれば、
P× ×P M = 0となる。

Proof. まず、補題 6(ii)より P は pre-integral である。従って P× → P gp は単射であり、P× ×P M →
P× ×P gp M は M の部分モノイドの間の包含射とみなすことができる (単射である)。よって補題 7を示
すためには、この射が全射であることを証明することが十分である。m ∈ M が fgp(m) ∈ ηP (P

×) を
満たすとする。示すべきことは、f(m) ∈ P× となることである。fgp(m) ∈ ηP (P

×) であるから、ある
p ∈ P× が存在して ηP (p) = fgp(m)となる。η の函手性より、fgp(m) = ηP (f(m))となる。ここで p ∈ P×

であるから、∃[−p] ∈ P である。この −p ∈ P を ηP (p) = fgp(m) = ηP (f(m)) の両辺に足すことで、
0 = ηP (p) + ηP (−p) = ηP (f(m)) + ηP (−p) = ηP (f(m)− p)が成り立つ。P は quasi-integralであるから、
補題 6 (i)より、f(m)− p ∈ η−1

P (0) = 0となる。よって f(m) = pであり、f(m) ∈ P× が従う。
また、M が sharpで integralであるときは、P× ×P M → P× ×P gp M →M をMgp の部分モノイドの間
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の包含射とみなすことで

P× ×P M ⊂ P× ×P gp M = (P× ×P gp Mgp)×Mgp M = (P× ×P gp Mgp) ∩M ⊂M×

が成り立つので、最後の主張はこれより従う。以上で補題 7の証明を完了する。

命題 8 (中山の呪い, cf. [Nak, Lemma 2.2.6]). M
f←− N

g−→ L をモノイドの図式で、M と L は sharp かつ
integralであるとする。P :

def
= M ⊔N Lと置く (ただしこれはMonにおける push-outである)。このとき、次

は同値である:

(i) P は quasi-integralである。
(ii) 任意の n ∈ Ngp に対して、fgp(n) ∈ Im(ηM ) と ggp(−n) ∈ Im(ηL) が成り立てば、fgp(n) = 0 と

ggp(−n) = 0が帰結する。

Proof. まず「(ii) ⇒ (i)」を証明する。p ∈ P が ηP (p) = 0 を満たしているとする。p = 0 を示せば
良い。iM : M → P と iL : L → P を自然な射とする。補題 3より、ある m ∈ M, l ∈ L が存在して
p = iM (m) + iL(l) が成り立つ。η の函手性より igpM (ηM (m)) + igpL (ηL(l)) = ηP (p) = 0 が成り立つから、
注意 2より、ある n ∈ Ngp が存在して、ηM (m) = fgp(n)と ηL(l) = ggp(−n)が成り立つ。ここで(ii)より、
m = 0と l = 0が従う。これは p = iM (m) + iL(l) = 0を導く。以上で「(ii) ⇒ (i)」の証明を完了する。
次に「(i) ⇒ (ii)」を証明する。P が quasi-integral であると仮定し、n ∈ Ngp が fgp(n) ∈ Im(ηM ) と

ggp(−n) ∈ Lgp を満たすとする。ηM (m) = fgp(n)となるm ∈ M と ηL(l) = ggp(−n)となる l ∈ Lをとる。
h = iM ◦ f = iN ◦ g と置く。このとき、η の函手性より、

ηP (iM (m) + iL(l)) = igpM (fgp(n)) + igpL (ggp(−n)) = hgp(n+ (−n)) = 0

となる。よって(i) (P の quasi-integral 性) と補題 6 (i)より、iM (m) + iL(l) = 0 が成り立つ。とくに、
iM (m), iL(l) ∈ P× が成り立つ。ここで M,L はどちらも sharp かつ integral であるから、補題 7より、
m ∈ M ×P P gp = 0と l ∈ L×P P gp = 0が従い、よって fgp(n) = ηM (m) = 0と ggp(−n) = ηL(l) = 0が
帰結する。以上で命題 8の証明を完了する。
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