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概要
このノートは S.E. シュリーヴ氏による「ファイナンスのための確率解析 II」の練習問題の解答です。
問題文は端折って書いています (書いてないものもあります)。解いていない問題：練習問題 7.1 (8) から
(11)、練習問題 7.2、練習問題 7.5、練習問題 7.6。
2025.11.01. 公開用に、少しだけ手を加えました (といっても、すでに公開されているものではあったの
ですが)。常識的な範囲内で自由に使っていただければと思っています。
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1 一般的な確率論
ノート. 確率変数 X が密度関数 f(x)を持つとする。ボレル可測関数 p : R → Rと実数 aに対して∫ a

−∞
p(x)f(x)dx =

∫
X≤a

p(X)dP

である。この式はX : Ω → Rによって”変数変換”をしている、と読むことができる。積分する領域は (−∞, a]

から X−1((−∞, a]) = (X ≤ a) に変換される。F (t)を X の累積分布関数とすれば、f(x)dx = dF (x)であ
る。F (x) = P(X ≤ x)と読めば dF (x) = dPっぽく見える。

練習問題 1.1. 次を示せ：

(1) A,B ∈ F , A ⊂ B ならば P(A) ≤ P(B)である。
(2) A ∈ F , An ∈ F , (n = 1, 2, · · · ) であり、A ⊂ An, (∀n) かつ limn→∞ P(An) = 0 ならば P(A) = 0 で
ある。

解答. (1)。B \A ∈ F であることと Pが非負の値しかとらないことと Aと B \Aが交わらないことから

P(B) = P(B \A) + P(A) ≥ P(A)

である。
(2)。(1)より P(A) ≤ P(An)が任意の nで成り立つので、

P(A) ≤ limP(An) = 0

となり、Pが非負の値しかとらないことから P(A) = 0となる。

練習問題 1.2. 無限回コイン投げの空間 Ω∞ の部分集合

A :
def
= {ω = ω1ω2 · · · ∈ ω∞|ω2i = ω2i−1, ∀i}

を考える。以下を示せ：

(1) Aは非可算無限集合である。
(2) 0 < p < 1ならば P(A) = 0である。

解答. (1)。次のような写像を考える：

f : Ω∞ → Ω∞

ω1ω2 · · · 7→ ω1ω1ω2ω2 · · ·

写像 f は ω1ω2 · · ·という元を、各 ωi を 2つずつ並べた元へ写す写像である。明らかに写像 f は単射であり、
さらに Aは写像 f の像である。従って Aは非可算無限集合である。
(2)。

An :
def
= {ω ∈ Ω∞|ω2n−1 = ω2n} ,

Bn :
def
=
⋂
i≤n

Ai
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と置くと A =
⋂

n Bn ⊂ · · · ⊂ Bn ⊂ Bn−1 ⊂ · · · である。また、各 nに対して
P(An) = (p2 + (1− p)2) = 1− 2p+ 2p2 = 1 + 2p(p− 1)

となり、P(Bn) =
∏n

i=1 P(Ai) = (1 + 2p(1− p))n である。ここで 0 < p < 1であることから、2p(p− 1) < 0

であるため、(1 + 2p(p− 1))n → 0, (n → ∞)となって練習問題 1.1 (2) より P(A) = 0である。

練習問題 1.3. [0, 1]のすべての部分集合 Aに対して、Aが有限集合であれば P(A) = 0、Aが無限集合であ
れば P(A) = ∞、と定義された集合関数 Pを考える。Pは (1.1.3)-(1.1.5)式を満たすが、(1.1.2)式を満たさ
ないことを示せ。

解答. 空集合は有限集合であるから P(∅) = 0であり Pは式 (1.1.3)を満たす。また、A ∪ B が無限集合であ
れば Aまたは B のいずれかが無限集合であることから、Pは式 (1.1.4)を満すこともわかる。式 (1.1.4)を満
たす Pは式 (1.1.5)も満たす。
An = {1/n}という一元集合を考えれば、

∑
n

P(An) =
∑
n

0 = 0 6= ∞ = P

(⋃
n

An

)
となるので Pは (1.1.2)を満たさない。

練習問題 1.4.

(1) 例題 1.1.4の確率空間 (Ω∞,F∞,P)上で、表の出る確率が p = 1/2であることを仮定して、標準正規
確率変数 Z を 1つ構築せよ。

(2) Ω∞ 上の確率変数の列 {Zn}∞n=1 で、次を満たすものを定義せよ：

∀ω ∈ Ω∞ に対し limn→∞ Zn(ω) = Z(ω)

であり、さらに各 Zn は最初の n回のコイン投げの結果にのみ依存する。

解答. (1)。例題 1.2.5の確率変数X と例題 1.2.6の関数N(x)を用いて Z(ω) :
def
= N−1(X(ω))とすれば良い。

(2)。例題 1.2.5の確率変数 Yn を用いて Xn(ω) :
def
=
∑n

i=1 Yi(ω)/2
i とおき、Zn(ω) :

def
= N−1(Xn(ω))とお

くと、N−1 の連続性と Xn(ω) → X(ω), n → ∞ であることから Zn(ω) → Z(ω), n → ∞ となる。また Yn

が n 回目のコイン投げの結果にのみ依存することから、Zn は最初の n 回のコイン投げの結果にのみ依存す
る。

練習問題 1.5. ∫
Ω

∫ ∞

0

I[0,X(ω))(x)dxdP(ω)

が EX にも ∫∞
0

(1− F (x))dxにも等しいことを示すことで

EX =

∫ ∞

0

(1− F (x))dx

を示せ。

解答. まず X が非負であることから ∫ ∞

0

I[0,X(ω))(x)dx = X(ω)
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となる。よって ∫
Ω

∫ ∞

0

I[0,X(ω))(x)dxdP(ω) = EX

となる。
次に、固定した 0 ≤ x < ∞に対して I[0,X(ω))(x)は X(ω) < xのとき 0、X(ω) ≥ xのとき 1となること
から ∫

Ω

I[0,X(ω))(x)dP(ω) = P(X ≥ x) = 1− P(X < x)

となる。F (x)は広義単調増加であり、従って P(X = x) 6= 0となる点 x ≥ 0は高々可算個である。よって∫ ∞

0

∫
Ω

I[0,X(ω))(x)dP(ω)dx =

∫ ∞

0

(1− P(X < x))dx =

∫ ∞

0

(1− F (x))dx

であり、以上を比較することで
EX =

∫ ∞

0

(1− F (x))dx

を得る。

練習問題 1.6. u ∈ R を一つ固定し、φ(x) = eux と置く。X は、平均が µ :
def
= EX で標準偏差が σ :

def
=

[E(X − µ)2]1/2 の正規確率変数とする。すなわち、X は次の密度関数を持つ：

f(x) =
1

σ
√
2π

exp(−(x− µ)2/2σ2)

(1) 次を確かめよ：
EeuX = exp(uµ+

1

2
u2σ2)

(2) Jensenの不等式
Eφ(X) ≥ φ(EX)

を確かめよ。

解答. (1)。本文中の定理 1.5.2を用いて計算する。以下の計算において exp(x) = ex である。

EeuX = Eφ(X) =

∫ ∞

−∞
φ(x)f(x)dx (ここの二つめの等式が定理 1.5.2である)

=

∫ ∞

−∞
eux · 1

σ
√
2π

e−(x−µ)2/2σ2

dx

=
1

σ
√
2π

·
∫ ∞

−∞
exp(ux− (x− µ)2/2σ2)dx

=
1

σ
√
2π

·
∫ ∞

−∞
exp((2σ2u+ 2µ)x− x2 − µ2)/2σ2)dx

=
1

σ
√
2π

·
∫ ∞

−∞
exp(−(x− (σ2u+ µ))2/2σ2 + µu+ σ2u2/2)dx

=
exp(µu+ σ2u2/2)

σ
√
2π

·
∫ ∞

−∞
exp(−(x− (σ2u+ µ))2/2σ2)dx

= eµu+σ2u2/2
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(2)。σ2u2 ≥ 0なので eσ
2u2/2 ≥ 1であり、また eµu > 0であるから

Eφ(X) = eµu+σ2u2/2 = eµu · eσ
2u2/2 ≥ eµu = φ(µ) = φ(EX)

となる。

練習問題 1.7. 各正の整数 nに対し、fn を平均 0、分散 nの正規密度関数とする。すなわち

fn(x) :
def
=

1√
2nπ

exp(−x2/2n)

とする。

(1) f(x) = limn→∞ fn(x)はどんな関数か？
(2) limn→∞

∫∞
−∞ fn(x)dxの値は？

(3) 以上の問題より
lim
n→∞

∫ ∞

−∞
fn(x)dx 6=

∫ ∞

−∞
f(x)dx

である。これが単調収束定理や優収束定理に反しないことを説明せよ。

解答. (1)。e−x2/2n → 1, n → ∞であるから fn(x) → 0, x → ∞である。よって f(x) = 0である。
(2)。fn(x) は (ある確率変数の) 密度関数であるから ∫∞

−∞ fn(x)dx = 1 であり、従って求める値は 1 で
ある。
(3)。単調収束定理 (1.4.5)に反しないことを見るには、単調収束定理の仮定を満たさないことを確かめれば
良い。つまり

f1 ≥ f2 ≥ · · · ≥ fn ≥ · · · a.e.

でないことを確かめれば良い。x =
√
n とすれば任意の m 6= n に対して fn(x) > fm(x) となることがわか

る：なぜならば

fn(x) > fm(x)

⇐⇒ e−1/2/
√
n > e−n/2m/

√
m

⇐⇒ e−1+n/m > n/m

となり、最後の式が m 6= nに対して成立することはよく知られている。従って関数列 fn は単調収束定理の
仮定を満たさない。
優収束定理の仮定を満たさないことを示す。g : R → Rを可測関数で任意の nに対して fn(x) ≤ g(x), a.e.

とする。fn(x) ≤ g(x), a.e. であることと、各 fn は x > 0 で単調減少であることから、|x| <
√
n に対して

1/
√
2neπ = fn(

√
n) < g(x) となる。√

n−
√
n− 1 > 1/2

√
nであることに注意すれば、∫ ∞

−∞
g(x)dx >

∞∑
n=1

√
n−

√
n− 1√

2neπ

>
1√
2eπ

∞∑
n=1

1

2n

= ∞

となる。これは優収束定理の仮定を満たす関数 g が存在しないことを示している。
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練習問題 1.8. X を非負の確率変数とし、
φ(t) :

def
= EetX

はすべての t ∈ Rに対して有限であると仮定する。さらにすべての t ∈ Rに対し E[XeeX ] < ∞と仮定する。
sn を tに収束する実数の列とし、

Yn :
def
=

etX − esnX

t− sn

を確率変数の列とする。

(1) 次を示せ：
lim

n→∞
EYn = E[ lim

n→∞
Yn] = E[XetX ]

これより φ′(t) = E[XetX ]となる。
(2) X が正の値も負の値もとりうるとし、任意の t ∈ Rに対して EetX < ∞かつ E[|X|etX ] < ∞である
と仮定する。このとき φ′(t) = E[XetX ]を示せ。

解答. (1)。tより大きい実数 sを一つとる。sn → t, n → ∞であるから、十分大きな nに対して sn < sであ
る。また本文中の式 (1.9.1)より、各 nに対して tと sn の間の値をとるある確率変数 θn があって

Yn(ω) =
etX(ω) − esnX(ω)

t− sn
= X(ω)eθn(ω)X(ω)

となる。ここで十分大きな nに対して sn < sであることから、十分大きな nに対して θn < sであり、また
X が非負であることから、従って十分大きな nに対して Yn ≤ XesX となる。ここで「すべての実数 tに対し
て E[XetX ] < ∞である」という仮定から、確率変数の列 Yn は優収束定理の仮定を満たす。従って

limEYn = E [limYn]

となる。また、各 ω に対して Yn(ω) → X(ω)etX(ω), n → ∞ であるから、

E [limYn] = E[XetX ]

となる。
(2)。X = X+ −X− と分ける。Y + :

def
= etX

+

, Y − :
def
= e−tX− とおけば、各 ω ∈ Ωに対して Y +(ω)または

Y −(ω)のどちらか一方は必ず 1であるから、

etX(ω) = Y +(ω) + Y −(ω)− 1

となる。従って φ+(t) :
def
= E[etX+

], φ−(t) :
def
= E[etX−

] とおけば、

φ(t) =

∫
Ω

etX(ω)dP(ω)

=

∫
Ω

(Y +(ω) + Y −(ω)− 1)dP(ω)

=

∫
Ω

etX
+(ω)dP(ω) +

∫
Ω

e−tX−(ω)dP(ω)− 1

= φ+(t) + φ−(−t)− 1
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となる。X+, X− はそれぞれ非負の確率変数であるから、(i)より

φ′(t) = (φ+)′(t)− (φ−)′(−t) = E[X+etX
+

]− E[X−e−tX−
]

である。ここで各 ω に対して X+etX
+

, X−e−tX− のうち一方は 0であるから、

E[X+etX
+

]− E[X−e−tX−
] =

∫
Ω

X+(ω)etX
+(ω)dP(ω)−

∫
Ω

X−(ω)e−tX−(ω)dP(ω)

=

∫
P(X≥0)

X(ω)etX(ω)dP(ω) +
∫
P(X≤0)

X(ω)etX(ω)dP(ω)

=

∫
Ω

X(ω)etX(ω)dP(ω) = E[XetX ]

となり所望の式を得る。

練習問題 1.9. X はある確率空間 (Ω,F ,P)上の確率変数であり、A ∈ F とする。Rの任意のぼれる集合 B

に対して ∫
A

IB(X(ω))dP(ω) = P(A)P(X ∈ B)

と仮定する (X は事象 Aと独立)。このとき任意の非負値ボレル可測関数 g に対して∫
A

g(X(ω))dP(ω) = P(A)Eg(X)

を示せ。

解答. 定義より

E[IB(X)] =

∫
Ω

IB(X(ω))dP(ω) = P(X ∈ B)

であるから、X が Aと独立であることより∫
A

IB(X(ω))dP(ω) = P(A)P(X ∈ B) = P(A)E[IB(X)]

となって、g が定義関数である場合は所望の等式が確認できた。
g が非負の単関数である場合。g =

∑
i aiIBi

とし、各 Bi は交わらないとする。このとき∫
A

g(X(ω))dP(ω) =
∫
A

∑
i

aiIBi
(X(ω))dP(ω)

=
∑
i

ai

∫
A

IBi(X(ω))dP(ω)

=
∑
i

aiP(A)P(X ∈ Bi)

= P(A) ·

(∑
i

aiP(X ∈ Bi)

)

となる。ここで∑i aiP(X ∈ Bi) = E[g(X)]であることに注意すれば、g が非負の単関数である場合に所望の
等式を得る。
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g が一般の非負値関数である場合。このとき、非負の単関数の列 0 ≤ g1 ≤ g2 ≤ · · ·により g = lim gi と表
すと、単調収束定理より ∫

A

g(X(ω))dP(ω) =
∫
Ω

IA · lim
n

gn(X(ω))dP(ω)

= lim
n

∫
Ω

IAgn(X(ω))dP(ω)

である。ここで gn は非負の単関数であるから、すでに所望の等式は確認済みで、従って

lim
n

∫
Ω

IAgn(X(ω))dP(ω) = lim
n

P(A)E[gn(X)]

となる。また、非負値確率変数の単調増加な族 gn(X) に対して単調収束定理を用いれば limn E[gn(X)] =

E[limn gn(X)] = E[g(X)] となり、以上を組み合わせることで所望の等式を得る。

練習問題 1.10. Pを Ω = [0, 1]上の一様 (ルベーグ) 測度とする。

Z(ω) :
def
=

{
0 , (0 ≤ ω < 1/2のとき),

2 , (1/2 ≤ ω ≤ 1のとき),

とし、A ∈ B[0, 1]に対し
P̃(A) :

def
=

∫
A

Z(ω)dP(ω)

と定める。

(1) P̃が確率測度であることを示せ。
(2) P(A) = 0ならば P̃(A) = 0であることを示せ。
(3) P̃(A) = 0であるが P(A) 6= 0となる Aの存在を示せ。とくに Pと P̃は同値でない。

解答. (1)。
P̃(Ω) =

∫
Ω

Z(ω)dP(ω) = 0 · (1/2− 0) + 2 · (1− 1/2) = 1

であるから、あとは可算加法性を確認すれば良い。Ai ∈ F を互いに交わらない集合の列、Bi :
def
=
⋃

j≤i Aj と
おき、B :

def
=
⋃∞

i=1 Ai =
⋃∞

i=1 Bi と置く。B1 ⊂ B2 ⊂ · · · ⊂ B であるから IB1
≤ IB2

≤ · · · ≤ IB であり、
B =

⋃∞
i=1 Bi であるから limi IBi = IB である。従って

P̃(B) =

∫
B

Z(ω)dP(ω) =
∫
Ω

(lim
i

IBi
)Z(ω)dP(ω)

⋆
= lim

i

∫
Ω

IBi
Z(ω)dP(ω) = lim

i

∑
j≤i

∫
Aj

Z(ω)dP(ω) = lim
i

∑
j≤i

P̃(Aj) =

∞∑
i=1

P̃(Aj)

である。ここで⋆の箇所に単調収束定理を用いた。
(2)。P(A) = 0 であるとする。A1 :

def
= A ∩ [0, 1/2), A2 :

def
= A ∩ [1/2, 1] と置く。このとき明らかに

A1, A2 ∈ F であり、P(A1) = P(A2) = 0である。さらに各点 ω ∈ A1 に対して Z(ω) = 0であるから

P̃(A1) =

∫
A1

Z(ω)dP(ω) = 0
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であり、各点 ω ∈ A2 に対して Z(ω) = 2であるから

P̃(A2) =

∫
A2

Z(ω)dP(ω) = 2P(A2) = 0

である。以上より P̃(A) = P̃(A1) + P̃(A2) = 0 となる。
(3)。A :

def
= [0, 1/2)とすれば P(A) = 1/2であるが P̃(A) = 0である。

練習問題 1.11. 例題 1.6.6の記号のもと
ẼeuY = eu

2/2

を示せ。とくに Y は P̃のもとでの標準正規確率変数となる。

解答. 計算すると、

Ẽ[euY ] ⋆
= E[euY Z]

♠
=

∫
Ω

euY (x)Z(x)φ(x)dx

=
1√
2π

∫
Ω

exp(u(x+ θ)− θx− 1

2
θ2 − 1

2
x2)dx

=
1√
2π

∫
Ω

exp(−1

2
((x+ θ − u)2 − u2))dx

=
e

1
2u

2

√
2π

∫
Ω

exp(−1

2
(x+ θ − u)2)dx

= e
1
2u

2

ここで⋆の箇所に定理 1.6.1 式 (1.6.4)を用い、♠の箇所に定理 1.5.2を用いた。以上で所望の等式が確認で
きた。

練習問題 1.12. 例題 1.6.6の記号のもとで Ẑ :
def
= eθY−θ2/2 とし、さらに A ∈ F に対して

P̂(A) :
def
=

∫
A

Ẑ(ω)dP̃ (ω)

と定める。このとき Ẑ = 1/Z と P̂ = Pを示せ。

解答. まず

Ẑ(ω) = exp(θY (ω)− 1

2
θ2) = exp(θ(X + θ)− 1

2
θ2) = exp(θX +

1

2
θ2) =

1

Z(ω)

であるから Ẑ = 1
Z である。次に ẐZ = 1を用いることで

P̂(A) =

∫
A

ẐdP̃(ω) =
∫
A

ˆZ(ω)Z(ω)dP(ω) =
∫
A

dP(ω) = P(A)

となるから P̂ = Pである。

練習問題 1.13. 例題 1.6.6 の記号のもと、ω̄ ∈ Ω を固定し、x = X(ω̄) と置く。ε > 0 に対し B(x, ε) :
def
=

[x− ε/2, x+ ε/2]とし、y :
def
= x+ θ,B(y, ε) :

def
= [y − ε/2, y + ε/2]と置く。
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(1) 次を示せ：
1

ε
P(X ∈ B(x, ε)) ≈ 1√

2π
exp(−X2(ω̄)

2
)

(2) Y が P̃のもとで標準正規確率変数であるためには次が必要であることを示せ：

1

ε
P̃(Y ∈ B(y, ε)) ≈ 1√

2π
exp(−Y 2(ω̄)

2
)

(3) {X ∈ B(x, ε)} = {Y ∈ B(y, ε)} を示せ。これを A(ω̄, ε)と置く。ω̄ ∈ A(ω̄, ε)である。
(4) Y が P̃について標準正規確率変数であるとき、次を示せ：

P̃(A(ω̄, ε))

P(A(ω̄, ε))
≈ exp(−θX(ω̄)− 1

2
θ2)

右辺は例題 1.6.6における Z(ω̄)であることに注意。

以上の手続きにより Y が P̃についての標準正規確率変数となるように Pを P̃に変換する確率変数 Z を求め
ることができる。

解答. (1)。X は標準正規確率変数であることを用いる。φ(x) = 1√
2π

e−x2/2, F (x) =
∫ x

−∞ φ(x)dx とおけば
F ′(x) = φ(x)であるから、

1

ε
P(X ∈ B(x, ε)) =

F (x+ ε/2)− F (x− ε/2)

ε

=
F (x+ ε/2)− F (x− ε/2)

(x+ ε/2)− (x− ε/2)

≈ φ(x) = φ(X(ω̄))

である。ただし ≈の部分は微分の定義より従う。これは所望の近似である。
(2)。Y の累積分布関数を FY (a) :

def
= P̃(Y ≤ a)とおいて 1

ε P̃(Y ∈ B(y, ε))を計算すれば、

1

ε
P̃(Y ∈ B(y, ε)) =

FY (y + ε/2)− FY (y − ε/2)

(y + ε/2)− (y − ε/2)
≈ F ′

Y (y)

である。Y が標準正規確率変数であるということは、FY (a) =
∫ a

−∞ φ(t)dtということであり、それはすなわ
ち F ′

Y (a) = φ(a)ということを意味する。従って Y が標準正規確率変数であるには

1

ε
P̃(Y ∈ B(y, ε)) ≈ φ(y)

でなければならない。y = x+ θ = X(ω̄) + θ = Y (ω̄)であるから、これは所望の近似である。
(3)。各 ω ∈ Ωに対して

x− ε/2 ≤ X(ω) ≤ x+ ε/2 ⇐⇒ y − ε/2 ≤ Y (ω) ≤ y + ε/2

であることを確かめればよいが、これは y = x + θ であることと Y = X + θ であることから明らかである。
また x = X(ω̄)であることから、ω̄ ∈ A(ω̄, ε)も従う。
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(4)。Y が P̃に関する標準正規確率変数であることから、

P̃(A(ω̄, ε))

P(A(ω̄, ε))
=

P̃(Y ∈ B(y, ε))

P(X ∈ B(x, ε))

=
F (y + ε/2)− F (y − ε/2)

F (x+ ε/2)− F (x− ε/2)

≈ φ(y)

φ(x)

= exp(
1

2
x2 − 1

2
y2)

= exp(
1

2
x2 − 1

2
(x+ θ)2)

= exp(−θx− 1

2
θ2)

となる。x = X(ω̄)であることに注意すればこれが所望の近似であることがわかる。

練習問題 1.14. X を確率空間 (Ω,F ,P)上の非負の確率変数で

P(X ≤ a) = 1− e−λa , a ≥ 0

であるとする。ただし λ > 0は定数。λ̃を別の正の定数とし、

Z :
def
=

λ̃

λ
e−(λ̃−λ)X

として、各 A ∈ F に対し
P̃(A) :

def
=

∫
A

ZdP

と置く。

(1) P̃(Ω) = 1を示せ。
(2) 確率変数 X の P̃のもとでの累積分布関数 F̃ (a) = P̃(X ≤ a)を計算せよ。

解答. (1)。(1− e−λa)′ = λe−λa であるから、X の密度関数は f(a) = λe−λa, a ≥ 0である。実際、a ≥ 0に
対して

P(X ≤ a) = 1− e−λa =

∫ a

0

λe−λtdt

である。定理 1.5.2を関数 g(x) = λ̃
λe

−(λ̃−λ)x に対して適用すれば、

P̃(Ω) =
∫ ∞

0

g(x)f(x)dx

=

∫ ∞

0

λ̃

λ
e−(λ̃−λ)x · λe−λxdx

= λ̃

∫ ∞

0

e−λ̃xdx

= 1

となる。
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(2)。A :
def
= {X ≤ a}と置き、IA を定義関数とする。このとき、定理 1.6.1より、

P̃(A) =

∫
Ω

IA(ω)dP̃

⋆
=

∫
Ω

IA(ω)Z(ω)dP(ω)

=

∫
A

Z(ω)dP(ω)

=

∫
A

λ̃

λ
e−(λ̃−λ)X(ω)dP(ω)

である (⋆の箇所に定理 1.6.1を用いた)。関数 g(x) = λ̃
λe

−(λ̃−λ)x に定理 1.5.2を適用すれば、X の Pに関
する密度関数が f(x) = λe−λx, x ≥ 0であることから、

=

∫ a

0

λ̃

λ
e−(λ̃−λ)x · λe−λxdx

= λ̃

∫ a

0

e−λ̃xdx

=

∫ λ̃a

0

e−tdt

= 1− e−λ̃a

となる。

練習問題 1.15. X を確率空間 (Ω,F ,P) 上の非負の確率変数ですべての x ∈ R に対して正となる密度関数
f(x)を持つと仮定する。g を狭義単調増加で微分可能な関数であって

lim
y→−∞

g(y) = −∞ , lim
y→∞

g(y) = ∞

を満たすものとし、確率変数 Y を Y :
def
= g(X)と定義する。h(y)を ∫∞

−∞ h(y)dy = 1を満たす非負の関数と
する。

Z :
def
=

h(g(X))g′(X)

f(X)

と定義する。

(1) Z は非負で、EZ = 1となることを示せ。
(2) 各 A ∈ F に対し

P̃(A) :
def
=

∫
A

ZdP

と定義するとき、Y は P̃のもとで密度 hであることを示せ。

解答. (1)。p(x) :
def
= h(g(x))g′(x)

f(x) とする。定理 1.5.2を p(x)に用いて計算すれば、

EZ = Ep(X) =

∫ ∞

−∞
p(x)f(x)dx

=

∫ ∞

−∞
h(g(x))g′(x)dx
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であるが、ここで gが狭義単調増加であり値域が R全体であるという仮定から、逆関数が存在し、x = g−1(t)

という変数変換によって t = g(x), dt = g′(x)dxとなるから、

=

∫ ∞

−∞
h(t)dt = 1

となる。
(2)。示すべき等式は以下である：

P̃(Y ≤ a) =

∫ a

−∞
h(x)dx

右辺を計算すると、x = g(t)という変数変換により∫ a

−∞
h(x)dx =

∫ g−1(a)

−∞
h(g(t))g′(t)dx

=

∫ g−1(a)

−∞
p(x)f(x)dx

=

∫
X≤g−1(a)

Z(ω)dP(ω)

となる。ここで g(X) = Y であるから {X ≤ g−1(a)
}
= {Y ≤ a} であり、従って

=

∫
Y≤a

Z(ω)dP(ω) = P̃(Y ≤ a)

となる。
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2 情報と条件付け
練習問題 2.1. (Ω,F ,P) を確率空間、F0 :

def
= {∅,Ω} を自明な σ-加法族、X を確率変数で F0-可測とする。

このときある定数 cが存在して任意の ω ∈ Ωに対して X(ω) = cとなる。

解答. X(ω1) < X(ω2)となる異なる元 ω1, ω2 ∈ Ω が存在すると仮定する。X(ω1) < a < X(ω2)となる実数
aを取れば、X が F0-可測であることから (X ≤ a), (X ≥ a)は F0 の元を定める。よって (X ≤ a), (X ≥ a)

はそれぞれ∅かΩのいずれかである。一方、ω1 6∈ (X ≥ a)より (X ≥ a) = ∅であるが、これは ω2 ∈ (X ≥ a)

に反する。以上で X は退化確率変数である。

練習問題 2.2. Ω2 :
def
= {HH,HT, TH, TT}とし、

S0 = 4 , S1(H) = 8 , S1(T ) = 2,

S2(HH) = 16 , S2(HT ) = S2(TH) = 4 , S2(TT ) = 1

を株価とする (S0, S1, S2 は確率変数で、S0 は定値、S1 は一つめの値で上のように決まる)。

P̃(HH) = 1/4 , P̃(HT ) = 1/4 , P̃(TH) = 1/4 , P̃(TT ) = 1/4,

P(HH) = 4/9 , P(HT ) = 2/9 , P(TH) = 2/9 , P(TT ) = 1/9,

で二つの確率測度 P̃,Pを定める。

X(ω) :
def
=

{
1 , S2(ω) = 4,

0 , S2(ω) 6= 4,

を確率変数とする。

(1) σ(X)を明示的に書け。
(2) σ(S1)を明示的に書け。
(3) σ(X)と σ(S1)は確率測度 P̃のもとで独立であることを示せ。
(4) σ(X)と σ(S1)は確率測度 Pのもとで独立でないことを示せ。
(5) Pのもとでは P(S1 = 8) = 2/3であり、P(S1 = 2) = 1/3である。X = 1とわかれば S1 の分布の推定
が変わることを直感的に説明せよ。

解答. (1)。
σ(X) = {∅,Ω, {HH,TT} , {HT, TH}}

(2)。
σ(S1) = {∅,Ω, {HH,HT} , {TH, TT}}

(3)。A ∈ σ(X), B ∈ σ(S1) とする。A,B の一方が ∅,Ω である場合に P̃(A ∩ B) = P̃(A)P̃(B) となるこ
とは自明であるから、どちらも ∅,Ωでないとして良い。このときいずれの場合も A ∩ B は一元集合であり、
従って

P̃(A ∩B) = 1/4 = 1/2× 1/2 = P̃(A)P̃(B)

となる。これは σ(X), σ(S1)が確率測度 P̃のもとで独立であることを示している。
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(4)。A :
def
= {HH,TT} ∈ σ(X), B :

def
= {HH,HT} ∈ σ(S1) とすると A ∩ B = {HH} であるから

P(A ∩ B) = P(HH) = 4/9 であるが、P(A) = 4/9 + 1/9 = 5/9,P(B) = 4/9 + 2/9 = 2/3 であるから
P(A)P(B) = 10/27 6= 4/9 = P(A ∩ B)となる。これは σ(X), σ(S1)が確率測度 Pのもとで独立でないこと
を示している。
(5)。

練習問題 2.3. X,Y を独立な標準正規確率変数、θ を定数、

V :
def
= X cos θ + Y sin θ

W :
def
= −X sin θ + Y cos θ

を新たな二つの確立変数とする。このとき V,W が独立な標準正規確率変数であることを示せ。

解答. a ∈ Rとし、
Ca :

def
=
{
(x, y) ∈ R2

∣∣x cos θ + y sin θ ≤ a
}

と置く。X,Y は独立で、標準正規確率変数であるから、定理 2.2.7(v) より (X,Y ) は同時密度関数として
1
2π e

−(x2+y2)/2 を持ち、

P(V ≤ a) = P(X cos θ + Y sin θ ≤ a)

= P((X,Y ) ∈ Ca)

=
1

2π

∫∫
Ca

e−(x2+y2)/2dxdy

となる。x1 = x cos θ+ y sin θと変数変換すれば、x2 + y2 = 1
cos2 θ (x

2
1 + y2 − 2x1y sin θ), dxdy = 1

cos θdx1dy

であるから、さらに x2 cos θ = x1, y2 cos θ = y と変数変換することで、

=
cos θ

2π

∫ ∞

−∞

∫ a/ cos θ

−∞
e−(x2

2+y2
2−2x2y2 sin θ)/2dx2dy2

=
cos θ

2π

∫ a/ cos θ

−∞
e−(x2

2 cos2 θ)/2

∫ ∞

−∞
e−(y2−x2 sin θ)2/2dy2dx2

=
cos θ√
2π

∫ a/ cos θ

−∞
e−(x2

2 cos2 θ)/2dx2

x3 = x2 cos θ とおけば

=
1√
2π

∫ a

−∞
e−x2

3/2dx3

となって V が標準正規確率変数であることがわかった。同じ計算をW でも行うと、x4 = −x sin θ+ y cosと
おけば

P(W ≤ a) =
1

2π

∫∫
−x sin θ+y cos θ≤a

e−(x2+y2)/2dxdy

=
1

2π

∫ a

−∞

∫ ∞

−∞
e−(y−x4 cos θ)2/2 sin2 θ−x2

4/2
1

sin θ
dydx4

=
1√
2π

∫ a

−∞
e−x2

4/2dydx4
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となる。よってW も標準正規確率変数となる。
V,W が独立であることを示す。V,W の同時累積分布関数を FV,W と置く。a, b ∈ Rに対し、

D :
def
=
{
(x, y) ∈ R2

∣∣x cos θ + y sin θ ≤ aかつ− x sin θ + y cos θ ≤ b
}

と置くと、u = x cos θ + y sin θ, v = −x sin θ + y cos θ の変数変換により、

FV,W (a, b) = P((X,Y ) ∈ D)

=

∫∫
D

e−(x2+y2)/2dxdy

=
1

2π

∫ a

−∞

∫ b

−∞
e−(u2+v2)/2dudv

= FV (a)FW (b)

となる。ここで FV , FW はそれぞれ V,W の累積分布関数である。従って定理 2.2.7(iii)⇒(i)より V,W は独
立である。
別解答. 積率母関数を計算すると、X,Y が独立であることから、定理 2.2.7(iv)より、

EeuV = Eeu cos θX+u sin θY = Eeu cos θXEeu sin θY

となるが、X,Y は標準正規確率変数であるから

= eu
2 cos2 θeu

2 sin2 θ = eu
2

となる。このような確率変数 V は標準正規である。W も同じ計算をすれば標準正規であることがわかる。独
立性も、定理 2.2.7(iv)を用いると

EetV+uW = Ee(t cos θ−u sin θ)X+(t sin θ+u cos θ)Y = Ee(t cos θ−u sin θ)XEe(t sin θ+u cos θ)Y

= e(t cos θ−u sin θ)2e(t sin θ+u cos θ)2 = et
2+u2

= EetV EeuW

と確認できる。

練習問題 2.4. 記号は例題 2.2.10の通りとする。X を標準正規確率変数とし、Z は次を満たすX と独立な確
率変数とする：

P(Z = 1) = P(Z = −1) =
1

2

Y :
def
= XZ と定義すると、Y は標準正規であり、X,Y は無相関であり、独立でない (例題 2.2.10)。

(1) X,Y の同時積率母関数が次であることを確かめよ：

EeuX+vY = e(u
2+v2)/2 · e

uv + e−uv

2

(2) (1)の式を使って EevY = ev
2/2 であることを示せ。これは標準正規確率変数の積率母関数であり、し

たがって Y は標準正規確率変数である。
(3) X,Y は独立でないことを示せ。
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解答. はじめに、本書で「スタンダート・マシン」と呼ばれている証明方法により、独立な確率変数 X,Y と
a ∈ Rに対して ∫

X≤a

Y dP = P(X ≤ a)

∫
Ω

Y dP

となることがわかる。f を任意の可測関数とすると、X, f(Y )は独立であるから (定理 2.2.5)、同様にして∫
X≤a

f(Y )dP = P(X ≤ a)

∫
Ω

f(Y )dP

であることもわかる。
(1)。上記の等式を用いて計算すると、

EeuX+vY =

∫
Ω

e(u+vZ)XdP

=

∫
Z=1

e(u+v)XdP+

∫
Z=−1

e(u−v)XdP

=
1

2

∫
Ω

e(u+v)XdP+
1

2

∫
Ω

e(u−v)XdP

=
1

2
(Ee(u+v)X + Ee(u−v)X)

となるが、X は標準正規確率変数であるから、

=
1

2
(e(u+v)2/2 + e(u−v)2/2)

= e(u
2+v2)/2 · e

uv + e−uv

2

となって所望の式を得る。
(2)。u = 0を (1)の等式に代入することで EevY = ev

2/2 を得る。
(3)。EeuX = eu

2/2 であるから、EeuXEevY = e(u
2+v2)/2 となるが、 euv+e−uv

2 6= 1 であるから、以上よ
り EeuXEevY 6= EeuX+vY がわかる。ここで定理 2.2.7(iv)を適用することで X,Y が独立でないことがわか
る。

練習問題 2.5. (X,Y )を次の同時密度関数を持つ 1組の確率変数とする：

fX,Y (x, y) =

{
2|x|+y√

2π
exp(− (2|x|+y)2

2 ) , y ≥ −|x|の場合,

0 , y < −|x|の場合.

X, Y はともに標準正規確率変数であり、互いに無相関であるが独立でないことを示せ。

解答. 同時密度関数が与えられたときに周辺密度関数を求める式 (cf. 定義 2.2.6) を用いて計算する。fX , fY
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をそれぞれ X,Y の密度関数とする。fX を計算する。以下では t = 2|x|+ y, u = t2/2と変数変換している：

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy

=

∫ ∞

−|x|

2|x|+ y√
2π

exp(− (2|x|+ y)2

2
)dy

=

∫ ∞

|x|

t√
2π

e−
t2

2 dt

=

∫ ∞

x2/2

1√
2π

e−udu

=
1√
2π

e−x2/2

従って X は標準正規確率変数である。fY を計算する。y を定数と考える。y ≥ 0のときはつねに y ≥ −|x|
であるから、

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx

=

∫ ∞

−∞

2|x|+ y√
2π

exp(− (2|x|+ y)2

2
)dx

= 2

∫ ∞

0

2x+ y√
2π

exp(− (2x+ y)2

2
)dx

=

∫ ∞

y

t√
2π

exp(− t2

2
)dt

=

∫ ∞

y2/2

1√
2π

e−udu

=
1√
2π

e−y2/2

となる。y ≤ 0のときは
y ≥ −|x| ⇐⇒ “x ≥ −y または x ≤ y′′

である。−y ≥ 0 ≥ y に注意すれば絶対値が外れて、

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx

=

∫ y

−∞

−2x+ y√
2π

exp(− (−2x+ y)2

2
)dx

+

∫ ∞

−y

2x+ y√
2π

exp(− (2x+ y)2

2
)dx

= 2

∫ ∞

−y

2x+ y√
2π

exp(− (2x+ y)2

2
)dx

=

∫ ∞

−y

t√
2π

exp(− t2

2
)dt

=

∫ ∞

y2/2

1√
2π

e−udu

=
1√
2π

e−y2/2
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となる。以上で Y も標準正規確率変数であることがわかった。さらに fX,Y , fX , fY の式の形を見ると、定理
2.2.7(i)⇔(v)より明らかに X,Y は独立でない。
定理 2.2.7(i)⇐(iv)の証明中で用いられている等式

Eh(X,Y ) =

∫∫
R2

h(x, y)dµX,Y (x, y)

を h = xy に対して用いることで

E[XY ] =

∫∫
R2

xyfX,Y (x, y)dxdy

=

∫∫
y≥−|x|

xyfX,Y (x, y)dxdy

=

∫ ∞

−∞
x

(∫ ∞

−|x|
y
2|x|+ y√

2π
exp(− (2|x|+ y)2

2
)dy

)
dx

となるが、ここで ∫ ∞

−|x|
y
2|x|+ y√

2π
exp(− (2|x|+ y)2

2
)dy

は xの関数として偶関数であるため、それに xをかけたものは奇関数であり、従って積分の結果は 0となる。
以上より共分散が

E[XY ]− EXEY = 0− 0 = 0

と計算でき、X,Y は無相関である。

練習問題 2.6. Ω :
def
= {a, b, c, d}を標本空間、Ωのすべての部分集合のなす集合 F を σ-加法族とし、

P(a) =
1

6
, P(b) =

1

3
, P(c) =

1

4
, P(d) =

1

4

で確率測度を定める。確率変数 X,Y を

X(a) = 1 , X(b) = 1 , X(c) = −1 , X(d) = −1,

Y (a) = 1 , Y (b) = −1 , Y (c) = 1 , Y (d) = −1,

で定め、Z :
def
= X + Y とする。

(1) σ(X)を明示的にかけ。
(2) E[Y |X]を決定せよ。また、部分平均の性質が満たされていることを確認せよ。
(3) E[Z|X]を決定せよ。また、部分平均の性質が満たされていることを確認せよ。
(4) E[Z|X]− E[Y |X]を計算せよ。これがなぜ X と一致するのかについて、条件つき期待値の適切な性質
を定理 2.3.2から引用して述べよ。

解答. (1)。σ(X) = {∅,Ω, {a, b} , {c, d}}
(2)。与えられた条件からわかるのは X の値であり、つまり σ(X) のどの集合に属するか、という
データが条件つき期待値 E[Y |X] を考える上で条件から判明する部分である。従って E[Y |X](a) =

E[Y |X](b),E[Y |X](c) = E[Y |X](d) となる。それぞれ A,B と置く。また、X = 1 であると判明した場
合には、そのもとでの Y の期待値は条件つき期待値の定義から Aであるが、明示的に計算すると

A = Y (a) · 1
6
· (1

2
)−1 + Y (b) · 1

3
· (1

2
)−1 =

1

3
− 2

3
= −1

3
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となる。同様に X = −1であると判明した場合には、

B = Y (c) · 1
4
· (1

2
)−1 + Y (d) · 1

4
· (1

2
)−1 =

1

2
− 1

2
= 0

となる。よって
E[Y |X](a) = E[Y |X](b) = −1

3
, E[Y |X](c) = E[Y |X](d) = 0

がわかる。部分平均の性質を満たしていることを確認する。∅の場合は良い。Ωの場合、∫
Ω

E[Y |X]dP = −1

3
· 1
6
− 1

3
· 1
3
+ 0 + 0 = −1

6∫
Ω

Y dP =
1

6
− 1

3
+

1

4
− 1

4
= −1

6

なのでこの場合は良い。{a, b}の場合、∫
{a,b}

E[Y |X]dP = −1

3
· 1
6
− 1

3
· 1
3
= −1

6∫
{a,b}

Y dP =
1

6
− 1

3
= −1

6

なのでこの場合は良い。{c, d}の場合、 ∫
{c,d}

E[Y |X]dP = 0∫
{a,b}

Y dP =
1

4
− 1

4
= 0

なのでこの場合は良い。以上で全ての場合について確認できた。
(3)。線形性 (定理 2.3.2(i)) より E[Z|X] = E[(X + Y )|X] = E[X|X] + E[Y |X]である。また既知量の括
り出し (定理 2.3.2(ii)) より E[X|X] = X である。以上より{

E[Z|X](a) = E[Z|X](b) = X(a) + E[Y |X](a) = 1− 1
3 = 2

3

E[Z|X](c) = E[Z|X](d) = X(c) + E[Y |X](c) = −1 + 0 = −1

となる。
部分平均の性質を満たしていることを確認する。∅の場合は良い。Ωの場合、∫

Ω

E[Z|X]dP =
2

3
· 1
6
+

2

3
· 1
3
− 1

4
− 1

4
= −1

6∫
Ω

ZdP =
1

6
· (1 + 1) +

1

3
· (1− 1) +

1

4
· (−1 + 1) +

1

4
· (−1− 1) = −1

6
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なのでこの場合は良い。{a, b}の場合、∫
{a,b}

E[Z|X]dP =
2

3
· 1
6
+

2

3
· 1
3
=

1

3∫
{a,b}

ZdP =
1

6
· (1 + 1) +

1

3
· (1− 1) =

1

3

なのでこの場合は良い。{c, d}の場合、∫
{c,d}

E[Z|X]dP = −1

4
− 1

4
= −1

2∫
{c,d}

ZdP =
1

4
· (−1 + 1) +

1

4
· (−1− 1) = −1

2

なのでこの場合は良い。以上で全ての場合が確認できた。
(4)。線形性 (定理 2.3.2(i)) より E[Z|X]−E[Y |X] = E[(X + Y )|X]−E[Y |X] = E[X|X] であるが、既知
量の括り出し (定理 2.3.2(ii)) より E[X|X] = X である。

練習問題 2.7. Y を確率空間 (Ω,F ,P) 上の可積分な確率変数、G を F の部分 σ-加法族とする。Err :
def
=

Y − E[Y |G]と定義する。これは Y を G の情報に基づいて推定したもの E[Y |G]との誤差である。Errは期待
値が 0で分散 Var(Err)がいくらかの確率変数である。
X を別の G-可測な確率変数とする。このとき

Var(Err) ≤ Var(Y −X)

を示せ。言い換えると、E[Y |G]は Y の推定のなかでもっとも誤差の分散が小さいものである。

解答. ヒントに従う。Z :
def
= E[Y |G]とおき、c :

def
= E[Y −X]と置く。cは定数で、Z は確率変数である。部分

平均の性質から E[E[(−)|G]] = E[(−)]となることに注意すると、E[Z] = E[E[Y |G]] = E[Y ]であるから、

Var(Y − Z) = E[(Y − Z)2]− (E[Y − Z])2 = E[(Y − Z)2]− (E[Y ]− E[Z])2 = E[(Y − Z)2]

となる。よって

Var(Y −X)−Var(Y −X) = E[((Y − Z) + (Z −X − c))2 − (Y − Z)2]

= E[(Z −X − c)2 + 2(Y − Z)(Z −X − c)]

≥ 2E[(Y − Z)(Z −X)− c(Y − Z)]

= 2E[(Y − Z)(Z −X)]

となる。E[(Y − Z)(Z −X)] = 0を示せばよい。Z −X を一つの G-可測な確率変数とみることで、E[(Y −
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Z)X] = 0を示せば十分である。Z = E[Y |G]であるから、

E[(Y − Z)X] = E[(Y − E[Y |G])X]

= E[XY −XE[Y |G]]
⋆
= E[XY − E[XY |G]]
= E[XY ]− E[E[XY |G]]
♠
= E[XY ]− E[XY ] = 0

となる。ただし⋆の箇所で既知量の括り出し (定理 2.3.2(ii)) を用い、♠の箇所で等式 E[E[(−)|G]] = E[(−)]

を用いた。

練習問題 2.8. X,Y を確率空間 (Ω,F ,P)上の可積分な確率変数とする。このとき Y − E[Y |X]と X は無相
関であることを示せ。より一般に、Y −E[Y |X]は σ(X)-可測なすべての確率変数と無相関であることを示せ。

解答. 本書の記号のとおり、Y2 :
def
= Y − E[Y |X]とおく。Z を σ(X)-可測な確率変数とする。

E[Y2] = E[Y − E[Y |X]] = E[Y ]− E[E[Y |X]] = E[Y ]− E[Y ] = 0

に注意して共分散を計算すると、

Cov(Y2, Z) = E[Y2Z]− E[Y2]E[Z]

= E[(Y − E[Y |X])Z]

= E[Y Z]− E[ZE[Y |X]]

となる。ここで Z は σ(X)-可測であるから、既知量の括り出しより E[ZE[Y |X]] = E[E[Y Z|X]] = E[Y Z] と
なり、以上より Cov(Y2, Z) = 0がわかる。すなわち Y2 は Z を無相関である。

練習問題 2.9. (Ω,F ,P)を確率空間、X を確率変数、f : R → Rを関数とする。

(1) f(X)で生成される σ-加法族 σ(f(X))が X で生成される σ-加法族 σ(X)より真に小さいが自明な σ-

加法族 (つまり {∅,Ω}) とは異なるような例を挙げよ。
(2) σ(f(X))が σ(X)より大きくなることはあり得るか？

解答. (1)。Ω = Rとして F としてボレル集合族 B をとる。確率変数 X として X = idR をとり、f として
f(x) = 0, (x < 0), 1, (x ≥ 0) と定めれば、f の生成する σ-加法族は

{∅,Ω = R, (−∞, 0), [0,∞)}

となってボレル集合族より真に小さいが自明ではない。
(2)。B を R のボレル集合族とする。f が可測であれば、f−1(B) ⊂ B であるから、σ(f ◦ X) =

X−1(f−1(B)) ⊂ X−1(B) = σ(X) となる。よって σ(f(X)) が σ(X) より大きくなることはあり得ない。
f が可測でない場合にはわからなかった。

練習問題 2.10. (Ω,F ,P)を確率空間、X,Y を確率変数で同時密度 fX,Y (x, y)を持ち、E|Y | < ∞であると
する。特に任意のボレル集合 C ⊂ R2 に対し

P((X,Y ) ∈ C) =

∫∫
C

fX,Y (x, y)dxdy
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となる。fX を X の密度関数とし、
fY |X(y|x) :def= fX,Y (x, y)

fX(x)

とする。
g(x) :

def
=

∫ ∞

−∞
yfY |X(y|x)dy =

∫ ∞

−∞

yfX,Y (x, y)

fX(x)
dy

とする。Aを σ(X)に属する集合とするとき、∫
A

g(X)dP =

∫
A

Y dP

となることを示せ。

解答. Aとして X ≤ aとなる集合の場合のみ考えれば良い。計算すると、∫
X≤a

g(X)dP =

∫ a

−∞
g(x)fX(x)dx

=

∫ a

−∞

∫ ∞

−∞
yfX,Y (x, y)dydx

となる。ここで関数 h(x, y) = y, (x ≤ a), 0, (x > 0)に対して式 (2.6.3)を適用すると、

= Eh(X,Y ) =

∫
Ω

h(X(ω), Y (ω))dP(ω) =
∫
A

Y dP

となる。

練習問題 2.11. (Ω,F ,P)を確率空間、X を確率変数とする。

(1) W を非負の σ(X)-可測な確率変数とするとき、ある関数 g が存在して W = g(X) を満たすことを
示せ。

(2) Y を非負の確率変数とし、X,Y は同時密度を持つとは限らないとする。E[Y |X] = g(X)となる g が
存在することを示せ。

解答. (1)。ヒントに従う。W がある A ∈ σ(X)に対する定義関数 IA であるとする。A ∈ σ(X)であること
から、あるボレル集合 B ⊂ R が存在して A = (X ∈ B) である。g : R → R を b ∈ B に対して g(b) = 1、
b 6∈ B に対して g(b) = 0と定義すると、g(X)(ω) = g(X(ω))であるから、

ω ∈ A ⇐⇒ X(ω) ∈ B ⇐⇒ g(X)(ω) = 1

となって g(X) = W となる。
次にW が単関数W =

∑N
i=1 IAi

の形であるとする。各 Ai は互いに交わらないとしてよい。このとき各 i

に対して IAi
= gi(X)となる gi をとれば、g =

∑N
i=1 gi に対してW = g(X)となる。

最後に一般の場合を考える。W は非負であるから、単関数の単調増加な列Wi が存在してWi → W,a.e.と
なる。各Wi に対して関数 gi をWi = gi(X)となるようにとれば、Wi が単調増加な列であることから gi も
そうである。g = lim gi とおけば g(X) = lim gi(X) = limWi = W となる。以上で全て示された。
(2)。E[Y |X]は σ(X)-可測であり、また Y が非負であることから E[Y |X]も非負である。よって (1)を用
いればある g があって E[Y |X] = g(X)となる。
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3 ブラウン運動
練習問題 3.1. W (t), t ≥ 0 をブラウン運動、F(t), t ≥ 0 を W に対する filtration とするとき、任意の
0 ≤ t < u1 < u2 に対して増分W (u2)−W (u1)は F(t)と独立であることを示せ。

解答. 任意にボレル集合 B と A ∈ F(t) をとる。B′ = (W (u2) −W (u1) ∈ B) ⊂ Ω とおく。A ∈ F(u1) で
もあるので、W (u2) − W (u1) が F(u1) と独立であることから、P(B′ ∩ A) = P(B′)P(A) となる。これは
W (u2)−W (u1)が F(t)と独立であることを示している。

練習問題 3.2. W (t), t ≥ 0をブラウン運動、F(t), t ≥ 0をW に対する filtrationとするとき、W 2(t)− tは
マルチンゲールであることを示せ。

解答. 任意に 0 ≤ s ≤ tをとる。E[W 2(t)− t|F(s)] = W 2(s)− sを示さねばならない。ブラウン運動の定義
から、

E[(W (t)−W (s))2] = E[(W (t)−W (s))2]− E[W (t)−W (s)]2 = Var(W (t)−W (s)) = t− s

であることに注意すると、

E[W 2(t)− t|F(s)] = E[(W (t)−W (s) +W (s))2 − t|F(s)]

= E[(W (t)−W (s))2 + 2W (s)(W (t)−W (s)) +W (s)2 − t|F(s)]

⋆
= E[(W (t)−W (s))2|F(s)] + 2W (s)E[W (t)−W (s)|F(s)] +W (s)2 − t

♠
= E[(W (t)−W (s))2] + 2W (s)E[W (t)−W (s)] +W (s)2 − t

♣
= (t− s) +W (s)2 − t

= W (s)2 − s

となる。ただし⋆の箇所は条件つき期待値の線形性と既知量の括り出しを用いていて、♠の部分はW (t) −
W (s) が F(s) と独立であることを用いていて、♣ の部分は E[W (t) −W (s)] = 0 (ブラウン運動の定義) と
E[(W (t)−W (s))2] = t− s (はじめの注意) を用いている。以上で示された。

練習問題 3.3. X を平均 µで分散 σ2 の正規確率変数とするとき、E[(X − µ)4] = 3σ4 となることを示せ。

解答. 積率母関数 φ(u) :
def
= E[eu(X−µ)] = eu

2σ2/2 を uでいっぱい微分すると以下のようになる：

φ′(u) = E[(X − µ)eu(X−µ)] = σ2ueu
2σ2/2 = σ2uφ(u)

φ′′(u) = E[(X − µ)2eu(X−µ)] = σ2(φ(u) + uφ′(u)) = (σ2 + u2σ4)φ(u)

φ′′′(u) = E[(X − µ)3eu(X−µ)] = 2uσ4φ(u) + (σ2 + u2σ4)φ′(u) = (3uσ4 + u3σ6)φ(u)

φ′′′′(u) = E[(X − µ)4eu(X−µ)] = (3σ4 + 3u2σ6)φ(u) + (3uσ4 + u3σ6)φ′(u) = (3σ4 + 6u2σ6 + u4σ8)φ(u)

よって E[(X − µ)4] = φ′′′′(0) = 3σ4 となる。

練習問題 3.4. T > 0として Πを区間 [0, T ]の分割 0 = t0 < t1 < · · · < tn = T とする。W (t)をブラウン運
動とする。
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(1) n → ∞かつ ‖Π‖ → 0であるときに、標本の 1次変分
n−1∑
j=0

|W (tj+1)−W (tj)|

はW のほとんど全ての経路で∞に発散することを示せ。
(2) n → ∞かつ ‖Π‖ → 0であるときに、標本の 3次変分

n−1∑
j=0

|W (tj+1)−W (tj)|3

はW のほとんどすべての経路で 0に収束することを示せ。

解答. (1)。ヒントの通り
n−1∑
j=0

(W (tj+1)−W (tj))
2 ≤ max

0≤k≤n−1
|W (tj+1)−W (tj)| ·

n−1∑
j=0

|W (tj+1)−W (tj)|

であるが、W は各標本に対して連続関数であるから、各標本 ω に対してある δ > 0 があって
max0≤k≤n−1 |W (tj+1)−W (tj)| < δ‖Π‖ となる。よって

1

δ‖Π‖

n−1∑
j=0

(W (tj+1)−W (tj))
2 <

n−1∑
j=0

|W (tj+1)−W (tj)|

がわかるが、‖Π‖ → 0のもとで
n−1∑
j=0

(W (tj+1)−W (tj))
2 → T 6= 0

であるから、左辺は→ ∞となり、特に右辺も∞に発散する。
(2)。(1)と同じ記号を用いると

n−1∑
j=0

|W (tj+1)−W (tj)|3 ≤ max
0≤k≤n−1

|W (tj+1)−W (tj)| ·
n−1∑
j=0

(W (tj+1)−W (tj))
2

< δ‖Π‖
n−1∑
j=0

(W (tj+1)−W (tj))
2

→ 0 , (‖Π‖ → 0)

となる。

練習問題 3.5. 金利 r とボラティリティ σ > 0を定数とする。

S(t) :
def
= S(0) exp((r − 1

2
σ2)t+ σW (t))

を期待収益率 r の幾何ブラウン運動 (つまりブラウン運動W (t)から上の式で定まる確率変数の族) で当初の
株価 S(0)は正とする。K > 0を定数とする。T > 0に対して次の等式を示せ：

E
[
e−rT (S(T )−K)+

]
= S(0)N(d+(T, S(0)))−Ke−rTN(d−(T, S(0)))
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ただしここで (S(T )−K)+ = max {0, S(T )−K}で、

d±(T, S(0)) :
def
=

1

σ
√
T

[
log

S(0)

K
+

(
r ± σ2

2

)
T

]
であり、N は累積標準正規分布、つまり

N(y) :
def
=

1√
2π

∫ y

−∞
exp(−1

2
x2)dx

である。

解答. W (t), t ≥ 0はブラウン運動なので、W (T )は平均 0で分散 T の確率変数である。よってW (T )の分布
関数は fT (x) :

def
= 1√

2πT
e−x2/2T である。ここで

g(x) :
def
= S(0) exp

(
(r − 1

2
σ2)T + σx

)
h(x) :

def
= e−rT (g(x)−K)+

と定義すれば、示すべき等式の左辺は E[h(W (T ))]である。d± :
def
= d±(T, S(0))と略記する。g(x) ≥ K とな

る xの範囲を求めると、

g(x) ≥ K ⇐⇒ S(0) exp

(
(r − 1

2
σ2)T + σx

)
≥ K

⇐⇒ (r − 1

2
σ2)T + σx ≥ log

K

S(0)

⇐⇒ x ≥ 1

σ

(
log

K

S(0)
− (r − 1

2
σ2)T

)
⇐⇒ x ≥ − 1

σ

(
log

S(0)

K
+ (r − 1

2
σ2)T

)
= −d−

√
T

である。W (T )の分布関数が fT であることから、次のように計算できる：

E[h(W (T ))] =

∫ ∞

−∞
h(x)fT (x)dx

=
1√
2πT

∫ ∞

−∞
e−rT (g(x)−K)+e−x2/2T dx

=
1√
2πT

e−rT

∫ ∞

−d−
√
T

(g(x)−K)+e−x2/2T dx

=
1√
2πT

e−rT

(∫ ∞

−d−
√
T

g(x)e−x2/2T dx−
∫ ∞

−d−
√
T

Ke−x2/2T dx

)

=
1√
2πT

e−rTS(0)e(r−σ2/2)T

∫ ∞

−d−
√
T

eσxe−x2/2T dx− 1√
2πT

e−rTK

∫ d−
√
T

−∞
e−x2/2T dx

=
1√
2πT

S(0)

∫ ∞

−d−
√
T

e−σ2T/2+σx−x2/2T dx− 1√
2π

Ke−rT

∫ d−

−∞
e−x2/2dx

=
1√
2πT

S(0)

∫ ∞

−d−
√
T

e−(x−σT )2/2T dx−Ke−rTN(d−)
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=
1√
2πT

S(0)

∫ d−
√
T

−∞
e−(x+σT )2/2T dx−Ke−rTN(d−)

となる。ここで d−
√
T + σT = d+

√
T であるから、

=
1√
2πT

S(0)

∫ d+

√
T

−∞
e−x2/2T dx−Ke−rTN(d−)

=
1√
2πT

S(0)N(d+)−Ke−rTN(d−)

を得る。これは所望の結果である。

練習問題 3.6. W (t), t ≥ 0をブラウン運動、F(t), t ≥ 0を関連する filtrationとする。

(1) µ ∈ Rに対し
X(t) :

def
= µt+W (t)

と置く (ドリフト µを持つブラウン運動)。0 ≤ s < tに対し τ = t− sとおき、

p(τ, x, y) :
def
=

1√
2πτ

exp

(
− (y − x− µτ)2

2τ

)
とする。任意の可測関数 f(x)に対し

g(x) :
def
=

∫ ∞

−∞
f(y)p(τ, x, y)dy

と定めると E[f(X(t))|F(s)] = g(X(s))となることを示せ。とくに X はマルコフ性を持つ。
(2) ν ∈ Rと σ > 0に対し、

S(t) = S(0)eσW (t)+νt

と置く (幾何的ブラウン運動)。τ = t− sとおき、

p(τ, x, y) :
def
=

1

σy
√
2πτ

exp

(
− (log(y/x)− ντ)2

2σ2τ

)
とする。任意の可測関数 f(x)に対し

g(x) :
def
=

∫ ∞

−∞
f(y)p(τ, x, y)dy

と定めると E[f(S(t))|F(s)] = S(s)となることを示せ。とくに S はマルコフ性を持つ。

解答. 任意に 0 ≤ s < tをとる。W (t)−W (s)は平均 0で分散 t− sの正規確率変数であるから、その密度関
数は

φ(x) :
def
=

1√
2πτ

e−
x2

2τ

である (τ = t− sである)。以下において f は任意の可測関数である。
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(1)。f(X(t)) = f(µt +W (t)) = f(µτ + (W (t) −W (s)) +X(s)) と変形する。W (t) −W (s)は F(s)と
独立な密度関数 φの確率変数で、X(s)は F(s)-可測であるから、X(s)を仮の変数 αで置き換えて

g(α) :
def
=

∫ ∞

−∞
f(µτ + x+ α)φ(x)dx

とおけば、独立性の補題から
E[f(X(t))|F(s)] = g(X(s))

となる。とくに X はマルコフ過程である。関数 g(x)を計算すれば、

g(x) =

∫ ∞

−∞
f(µτ + x+ y)φ(y)dy

=

∫ ∞

−∞
f(y)φ(y − x− µτ)dy

となるが、
φ(y − x− µτ) =

1√
2πτ

exp

(
− (y − x− µτ)2

2τ

)
= p(τ, x, y)

であるから、p(τ, x, y)が X の推移密度であることもわかる。
(2)。次のように変形する：

f(S(t)) = f(S(0)eσW (t)+νt) = f(S(0)eσW (s)+νseσ(W (t)−W (s))+ντ ) = f(S(s)eσ(W (t)−W (s))+ντ ).

W (t)−W (s)は F(s)と独立な密度関数 φの確率変数で、S(s)は F(s)-可測であるから、S(s)を仮の変数 α

で置き換えて
g(α) :

def
=

∫ ∞

−∞
f(αeσx+ντ )φ(x)dx

とおけば、独立性の補題から
E[f(S(t))|F(s)] = g(S(s))

となる。とくに S はマルコフ過程である。関数 g(x)を計算すれば、

g(x) =

∫ ∞

−∞
f(xeσy+ντ )φ(y)dy

=

∫ ∞

−∞
f(xey+ντ )

1

σ
φ
( y
σ

)
dy

=

∫ ∞

−∞
f(xey)

1

σ
φ

(
y − ντ

σ

)
dy

=

∫ ∞

0

f(xy)
1

σy
φ

(
log y − ντ

σ

)
dy

=

∫ ∞

0

f(y)
1

σy
φ

(
log y

x − ντ

σ

)
dy

となるが、

1

σy
φ

(
log
(
y
x

)
− ντ

σ

)
=

1

σy
√
2πτ

exp

−

(
log
(
y
x

)
− ντ

σ

)2

/2τ


=

1

σy
√
2πτ

exp

(
−
(
log y

x − ντ
)2

2σ2τ

)
= p(τ, x, y)
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であるから、p(τ, x, y)が S の推移密度であることもわかる。

練習問題 3.7. W をブラウン運動とし、m > 0, µ ∈ Rを固定する。0 ≤ t < ∞に対し

X(t) :
def
= µt+W (t),

τm :
def
= min {t ≥ 0|X(t) = m}

と定め、X(t)がどの時刻 tでもレベルmに到達しない場合は τm = ∞と定める。σ を正の整数とし、

Z(t) :
def
= exp

(
σX(t)−

(
σµ+

1

2
σ2

)
t

)
とする。

(1) Z(t), t ≥ 0がマルチンゲールであることを示せ。
(2) (1)を用いて次を示せ：

E
[
exp

(
σX(t ∧ τm)−

(
σµ+

1

2
σ2

)
(t ∧ τm)

)]
= 1 , (t ≥ 0).

ただしここで t ∧ τm :
def
= min {t, τm} である。

(3) µ ≥ 0とする。σ > 0に対して次を示せ：

E
[
exp

(
σm−

(
σµ+

1

2
σ2

)
τm

)
Iτm<∞

]
= 1.

これを用いて P(τm < ∞) = 1を示せ。また次のラプラス変換を求めよ：

Ee−ατm = emµ−m
√

2α+µ2
, α > 0.

(4) µ > 0であれば Eτm < ∞となることを示せ。Eτm の公式を求めよ。
(5) µ < 0とする。σ > −2µに対して次を示せ：

E
[
exp

(
σm−

(
σµ+

1

2
σ2

)
τm

)
Iτm<∞

]
= 1.

これを用いて P(τm < ∞) = e−2m|µ| を示せ。これは真に 1 より小さい。また次のラプラス変換を求
めよ：

Ee−ατm = emµ−m
√

2α+µ2
, α > 0.

解答. 以下では F(t), t ≥ 0をW に関する filtrationとし、0 ≤ s < tに対して τ :
def
= t− sとおく。

(1)。0 ≤ s < tをとって E[Z(t)|F(s)] = Z(s)を確認する。

Z(t) = exp

(
σX(t)−

(
σµ+

1

2
σ2

)
t

)
= exp

(
σ(X(t)−X(s)) + σX(s)−

(
σµ+

1

2
σ2

)
τ +

(
σµ+

1

2
σ2

)
s

)
= Z(s) exp

(
σ(W (t)−W (s)) + µστ −

(
σµ+

1

2
σ2

)
τ

)
= Z(s) exp

(
σ(W (t)−W (s))− 1

2
σ2τ

)
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と変形する。Z(s)は F(s)-可測であるから、既知量の括り出しによって

E[Z(t)|F(s)] = E
[
Z(s) exp

(
σ(W (t)−W (s))− 1

2
σ2τ

)∣∣∣∣F(s)

]
= Z(s)E

[
exp

(
σ(W (t)−W (s))− 1

2
σ2τ

)∣∣∣∣F(s)

]
となる。W (t)−W (s)は F(s)と独立な確率変数なので、さらに

= Z(s)E
[
exp

(
σ(W (t)−W (s))− 1

2
σ2τ

)]
となる。また、W (t)−W (s)は平均 0で分散 τ = t− sの正規確率変数であるから、その密度関数は

φ(x) :
def
=

1√
2πτ

e−
x2

2τ

であり、従って

E
[
exp

(
σ(W (t)−W (s))− 1

2
σ2τ

)]
=

1√
2πτ

∫ ∞

−∞
exp

(
σx− 1

2
σ2τ − x2

2τ

)
dx

=
1√
2πτ

∫ ∞

−∞
exp

(
−1

2

(
x2 − 2τσx+ σ2τ2

))
dx

=
1√
2πτ

∫ ∞

−∞
exp

(
−1

2
(x− τσ)2

)
dx

= 1

となる。以上より

E[Z(t)|F(s)] = Z(s)E
[
exp

(
σ(W (t)−W (s))− 1

2
σ2τ

)]
= Z(s)

となる。以上で Z はマルチンゲールである。
(2)。示すべきことは各 tに対して E[Z(t ∧ τm)] = 1となることである。t ∧ τm ≤ 0であるので、Z がマル
チンゲールであることと Z(t ∧ τm)が F(0)と独立であることから

E[Z(t ∧ τm)] = E[Z(t ∧ τm) | F(0)] = Z(0) = 1

となる。
(3)。はじめに期待値についての等式を示す。τm < ∞であれば、十分大きな tに対して t > τm となるの
で、十分大きな tに対して X(t ∧ τm) = mである。τm = ∞であればつねに X(t) < mであり、従って

0 ≤ Z(t ∧ τm) < exp

(
σm−

(
σµ+

1

2
σ2

)
t

)
→ 0 , (t → ∞)

である (σ > 0, µ ≥ 0であることから −
(
σµ+ 1

2σ
2
)
t → −∞ となることに注意)。よって

exp

(
σm−

(
σµ+

1

2
σ2

)
τm

)
Iτm<∞ = lim

t→∞
Z(t ∧ τm)
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である。従って示すべきことは E [limt→∞ Z(t ∧ τm)] = 1 である。ここで、Z(t ∧ τm) は上から可積分関数
(定数関数) eσµ で抑えることができるので、とくに優収束定理から期待値と極限は交換でき、

E
[
lim
t→∞

Z(t ∧ τm)
]
= lim

t→∞
E [Z(t ∧ τm)] = lim 1 = 1

となる。
次に P(τm < ∞) = 1を示す。今示した期待値に関する等式から、

E
[
exp

(
−
(
σµ+

1

2
σ2

)
τm

)
Iτm<∞

]
= e−σm

となることがわかる。これはすべての σ > 0で成り立つ。また左辺の期待値の中身はどんな σ > 0に対して
も Iτm<∞ という可積分関数で上から抑えられていることに注意すれば、両辺で σ → 0の極限を取れば優級数
定理を用いて

E [Iτm<∞] = 1

を得る。この等式の左辺は P(τm < ∞)に他ならない。
最後に Ee−ατm = emµ−m

√
2α+µ2 を示す。P(τm < ∞) = 1であるから、すでに示した期待値に関する等式

において定義関数 Iτm<∞ は 1であるとしてよく、従って

E
[
exp

(
−
(
σµ+

1

2
σ2

)
τm

)]
= e−σm

となる。任意の α > 0に対して α =
(
σµ+ 1

2σ
2
) となる σ > 0は一意的に存在する。二次方程式をとけば、

その σ は (σ > 0であることから)

σ = −µ+
√

2α+ µ2

と求めることができる。代入して、各 α > 0に対して

Ee−ατm = e−σm = emµ−m
√

2α+µ2

となることがわかる。以上で全て示された。
(4)。Ee−ατm = emµ−m

√
2α+µ2 を αで微分すると、左辺は E [−τme−ατm ]となる。右辺は、β =

√
2α+ µ2

とおけば、 dβ
dα = 2 1

2β であるから、

demµ−m
√

2α+µ2

dα
= emµ de

−mβ

dβ

dβ

dα
= −memµ−mβ · 2 1

2β
= −memµ−mβ

β

となる。よって
E
[
τme−ατm

]
=

memµ−mβ

β

を得る。ここで α → 0とすると、β → µ > 0であるから、E[τm] = m
µ < ∞を得る。

(5)。σ > −2µ (これは正) であるから σµ+ 1
2σ

2 = σ
2 (2µ+ σ) > 0であり、従って (3)と同様にして

exp

(
σm−

(
σµ+

1

2
σ2

)
τm

)
Iτm<∞ = lim

t→∞
Z(t ∧ τm)

となることがわかる。この場合でも 0 < Z(t ∧ τm) < eσm であるから、優収束定理から

E
[
lim
t→∞

Z(t ∧ τm)
]
= lim

t→∞
E[Z(t ∧ τm)] = 1
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となる。以上で所望の期待値の等式が示された。また、この期待値の等式から

E
[
exp

(
−
(
σµ+

1

2
σ2

)
τm

)
Iτm<∞

]
= e−σm

がすべての σ > −2µで成立する。ここで σ → −2µとすれば、同じく優収束定理より、

E [Iτm<∞] = e2mµ

を得る。左辺は = P(τm < ∞)である。µ < 0なので µ = −|µ|である。以上より P(τm < ∞) = e2mµ とな
る。最後に、τm = ∞であるときも exp

(
−
(
σµ+ 1

2σ
2
)
τm
)
= 0となっていることに注意すれば、

E
[
exp

(
−
(
σµ+

1

2
σ2

)
τm

)]
= e−σm

であることがわかるので、ここで α = σµ+ 1
2σ

2 > 0とおけばやはり σ = −µ+
√

2α+ µ2となって (σ > −2µ

となる符号は +側)、
Ee−ατm = emµ−m

√
2α+µ2

がわかる。

練習問題 3.8. σ > 0, τ ≥ 0を定数、nを正の整数とする。単位時間あたり n回コイン投げを行うモデルを考
える。

p̃n :
def
=

r
n + 1− e−σ/

√
n

eσ/
√
n − e−σ/

√
n

q̃n :
def
=

e−σ/
√
n − r

n − 1

eσ/
√
n − e−σ/

√
n

とおく。tを正の有理数とする。ntが整数となる各 nに対して確率変数X1,n, · · · , Xnt,n を互いに独立で同一
の分布に従い確率

P̃(Xk,n = 1) = p̃n , P̃(Xk,n = −1) = q̃n , (k = 1, · · · , nt)

を持つものとし、
Mnt,n :

def
=

nt∑
k=1

Xk,n

と定める。時刻 tでの株価 (確率変数) を

Sn(t) :
def
= S(0) exp

(
σ√
n
Mnt,n

)
と定める。

(1) 1√
n
Mnt,n の積率母関数 φn(u)は次であることを示せ：

φn(u) =

[
e

u√
n

(
r
n + 1− e−σ/

√
n

eσ/
√
n − e−σ/

√
n

)
− e

− u√
n

(
r
n + 1− e−σ/

√
n

eσ/
√
n − e−σ/

√
n

)]nt
.
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(2) x = 1/
√
nとおく。logφ1/x2(u)を計算せよ。次を示せ：

logφ1/x2(u) =
t

x2
log

[
(rx2 + 1) sinhux+ sinh(σ − u)x

sinhσx

]
.

また、これを次のように書き換えよ：

logφ1/x2(u) =
t

x2
log

[
coshux+

(rx2 + 1− coshσx) sinhux

sinhσx

]
.

(3) 次を示せ：

coshux+
(rx2 + 1− coshσx) sinhux

sinhσx
= 1 +

1

2
u2x2 +

rux2

σ
− 1

2
ux2σ + 0(x4).

(4) limx→+0 log1/x2(u)を計算せよ。 σ√
n
Mnt,n の極限分布が平均 (r− 1

2σ
2)tで分散 σ2tの正規分布となる

ことを説明せよ。

解答. (1)。各 Xk,n は互いに独立であるから、

φn(u) = E
[
e
u· 1√

n
Mnt,n

]
= E

[
e

u√
n

∑nt
k=1 Xk,n

]
=

nt∏
k=1

E
[
e

u√
n
Xk,n

]
となる。ここで Xk,n は 1か −1であるから、

E
[
e

u√
n
Xk,n

]
= e

u√
nP(Xk,n = 1) + e

− u√
nP(Xk,n = −1) = e

u√
n p̃n + e

− u√
n q̃n

となる。以上より、
φn(u) =

nt∏
k=1

E
[
e

u√
n
Xk,n

]
=
(
e

u√
n p̃n + e

− u√
n q̃n

)nt
である。p̃n, q̃n の定義より、これは所望の結果であることがわかる。
(2)。まず x = 1/

√
nであるから、

p̃1/x2 =
rx2 + 1− e−σx

eσx − e−σx
=

rx2 + 1− e−σx

2 sinhσx

q̃1/x2 =
eσx − rx2 − 1

eσx − e−σx
=

eσx − rx2 − 1

2 sinhσx

である。従って、

logφ1/x2(u) = log
(
euxp̃1/x2 + e−uxq̃1/x2

)t/x2

=
t

x2
log

(
eux(rx2 + 1− e−σx) + e−ux(eσx − rx2 − 1)

2 sinhσx

)
=

t

x2
log

(
(rx2 + 1)(eux − e−ux)− eux−σx + e−ux+σx

2 sinhσx

)
=

t

x2
log

(
2(rx2 + 1) sinhux+ 2 sinh(σ − u)x

2 sinhσx

)
=

t

x2
log

(
(rx2 + 1) sinhux+ sinh(σ − u)x

sinhσx

)
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となる。これは所望の結果である。また、logの中身は
(rx2 + 1) sinhux+ sinh(σ − u)x

sinhσx
=

(rx2 + 1) sinhux+ sinhσx coshux− coshσx sinhux

sinhσx

= coshux+
(rx2 + 1) sinhux− coshσx sinhux

sinhσx

= coshux+
((rx2 + 1)− coshσx) sinhux

sinhσx

と変形できる。
(3)。テイラー展開

cosh z = 1 +
1

2
z2 +O(z4) , sinh z = z +O(z3)

を用いれば

coshux+
((rx2 + 1)− coshσx) sinhux

sinhσx

= 1 +
1

2
u2x2 +O(x4) +

(
(rx2 + 1)− 1− 1

2σ
2x2 +O(x4)

)
(ux+O(x3))

σx(1 +O(x4))

= 1 +
1

2
u2x2 + x2

(
r − 1

2
σ2 +O(x2)

)(u
σ
+O(x2)

)
= 1 +

1

2
u2x2 +

ru

σ
x2 − 1

2
uσx2 +O(x4)

となる。これは所望の等式である。
(4)。テイラー展開 log(1 + x) = x+O(x3)を用いて計算すれば、

φ1/x2(u) =
t

x2
log

(
coshux+

((rx2 + 1)− coshσx) sinhux

sinhσx

)
=

t

x2
log

(
1 +

1

2
u2x2 +

ru

σ
x2 − 1

2
uσx2 +O(x4)

)
=

t

x2

(
1

2
u2x2 + u

(
r

σ
x2 − 1

2
σx2

)
+O(x6)

)
= t

(
1

2
u2 + u

(
r

σ
− 1

2
σ

)
+O(x4)

)
→ 1

2
u2t+ ut

(
r

σ
− 1

2
σ

)
, (x → +0)

となる。よって 1√
n
Mnt,n の極限分布の積率母関数は

exp

(
1

2
u2t+ ut

(
r

σ
− 1

2
σ

))
であり、このことは 1√

n
Mnt,n の極限が平均

(
r
σ − 1

2σ
)
tで分散 tの正規確率変数であることを意味する。これ

に σ をかければ、 σ√
n
Mnt,n の極限が平均

(
r − 1

2σ
2
)
tで分散 σ2tの正規確率変数であることがわかる。

練習問題 3.9. m > 0を定数とし、
f(t) :

def
=

m

t
√
2πt

exp

(
−m2

2t

)
とする。

g(α) :
def
=

∫ ∞

0

e−αtf(t)dt, α > 0

34



を f(t)のラプラス変換とする。

(1) a, b > 0に対し
I(a, b) :

def
=

∫ ∞

0

exp

(
−a2x2 − b2

x2

)
dx

とおく。次を示せ：
I(a, b) =

b

a

∫ ∞

0

1

y2
exp

(
−a2y2 − b2

y2

)
dy.

(2) 次を示せ：
I(a, b) =

1

2a

∫ ∞

0

(
−a+

b

x2

)
exp

(
−a2x2 − b2

x2

)
dx.

さらに次を示せ：
I(a, b) =

√
π

2a
e−2ab.

(3) 次を示せ：
g(α) =

2m√
2π

I(m/
√
2,
√
α) = e−m

√
2α.

解答. (1)。変数変換 y = b/axを行うと、ax = b/y, b/x = ay, dx = −bdy/ay2 であるから、

I(a, b) =

∫ ∞

0

exp

(
−a2x2 − b2

x2

)
dx

= −
∫ 0

∞

b

ay2
exp

(
− b2

y2
− a2y2

)
dy

=
b

a

∫ ∞

0

1

y2
exp

(
−a2y2 − b2

y2

)
dy

となる。
(2)。計算すれば

I(a, b) =
1

2
I(a, b) +

1

2
I(a, b)

=
1

2

∫ ∞

0

exp

(
−a2x2 − b2

x2

)
dx

+
1

2
· b
a

∫ ∞

0

1

x2
exp

(
−a2x2 − b2

x2

)
dx

=
1

2

∫ ∞

0

(
1 +

b

ax2

)
exp

(
−a2x2 − b2

x2

)
dx

=
1

2a

∫ ∞

0

(
a+

b

x2

)
exp

(
−a2x2 − b2

x2

)
dx

となる。ここで t = ax− b/xと変数変換すれば、−a2x2 − b2

x2 = −t2 − 2ab, dt = (a+ b/x2)dxであるから、

=
1

2a

∫ ∞

−∞
exp

(
−t2 − 2ab

)
dt

=
e−2ab

2a

∫ ∞

−∞
e−t2dt =

√
π

2a
e−2ab

となる。
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(3)。x =
√
tの変数変換を行うと、

g(α) =

∫ ∞

0

e−αtf(t)dt

= 2

∫ ∞

0

e−αx2

f(x2)xdx

= 2

∫ ∞

0

e−αx2

· m

x2
√
2π

e−m2/2x2

dx

=
2m√
2π

∫ ∞

0

1

x2
exp

(
−αx2 − m2

2x2

)
dx

=
2m√
2π

∫ 0

∞
t2 exp

(
−α

1

t2
−m2t2/2

)
−dt

t2

=
2m√
2π

∫ ∞

0

exp

(
−m2t2/2− α

1

t2

)
dt

=
2m√
2π

I(m/
√
2,
√
α)

=
2m√
2π

·
√
π

2m/
√
2
e−2m

√
α/

√
2

= e−m
√
2α

となる。
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4 確率解析
練習問題 4.1. M(t), 0 ≤ t ≤ T をある filtration F(t), 0 ≤ t ≤ T に関するマルチンゲールな確率過程、∆(t)

を F(t)と適合する単過程とする。各 t ∈ [tk, tk+1)に対して

I(t) :
def
=

k−1∑
j=0

∆(tj) (M(tj+1)−M(tj)) + ∆(tk) (M(t)−M(tk))

と定義する (確率積分)。このとき I(t)はマルチンゲールであることを示せ。

解答. 0 ≤ s < tを任意にとる。tl ≤ s < tl+1 となる lを取れば、

E [I(t)|F(s)] =

k−1∑
j=0

E [∆(tj) (M(tj+1)−M(tj))|F(s)] + E [∆(tk) (M(t)−M(tk))|F(s)]

=

l−1∑
j=0

E [∆(tj) (M(tj+1)−M(tj))|F(s)] + E [∆(tl) (M(tl+1)−M(tl))|F(s)]

+

k−1∑
j=l

E [∆(tj) (M(tj+1)−M(tj))|F(s)] + E [∆(tk) (M(t)−M(tk))|F(s)]

となる。各項を計算する。
第一項は、tj ≤ s であることから各 ∆(tj) (M(tj+1)−M(tj)) は F(s)-可測となり、既知量の括り出しに
よって

l−1∑
j=0

E [∆(tj) (M(tj+1)−M(tj))|F(s)] =

l−1∑
j=0

∆(tj) (M(tj+1)−M(tj))

となる。
第二項を計算する。線形性より

E [∆(tl) (M(tl+1)−M(tl))|F(s)] = E [∆(tl)M(tl+1)|F(s)]− E [∆(tl)M(tl)|F(s)]

となるが、tl ≤ sであることから ∆(tl),M(tl)はどちらも F(s)-可測で、従って既知量の括り出しによって

= ∆(tl)E [M(tl+1)|F(s)]−∆(tl)M(tl)

となる。またM がマルチンゲールであることから

= ∆(tl)M(s)−∆(tl)M(tl) = ∆(tl)(M(s)−M(tl))

となる。
第三項を計算する。l < j であるとする。s ≤ tj なので F(s) ⊂ F(tj)であり、従って反復条件つき確率の
計算から

E [∆(tj) (M(tj+1)−M(tj))|F(s)] = E [E [∆(tj) (M(tj+1)−M(tj))|F(tj)]|F(s)]

となる。ここで ∆(tj),M(tj)は F(tj)-可測であるから、線形性と既知量の括り出しによって

= E [∆(tj)E[M(tj+1)|F(tj)]−∆(tj)M(tj)|F(s)]
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となる。M がマルチンゲールであることから E [M(tj+1)|F(tj)] = M(tj)なので、以上より第三項は 0とな
る。全く同様の計算により第四項も 0となる。
以上を足し合わせると

E[I(t)|F(s)] =

l∑
j=1

∆(tj) (M(tj+1)−M(tj)) + ∆(tl) (M(s)−M(tl)) = I(s)

となり、I がマルチンゲールであることがわかった。

練習問題 4.2. W (t), 0 ≤ t ≤ T をブラウン運動、F(t)をW (t)に関する filtration、∆(t)を確定的な単過程、
つまりある分割 0 = t0 ≤ t1 ≤ · · · ≤ tn = T があって、各 j = 1, · · · , nについて ∆は Ω× [tj−1, tj)上の定
数関数であるとする。各 t ∈ [tk, tk+1]に対して

I(t) :
def
=

k−1∑
j=0

∆(tj) (W (tj+1)−W (tj)) + ∆(tk) (W (t)−W (tk))

と定義する。

(1) 0 ≤ s < t ≤ T に対して増分 I(t)− I(s)は F(s)と独立であることを示せ。
(2) 0 ≤ s < t ≤ T に対して増分 I(t) − I(s)は平均 0で分散 ∫ t

s
∆2(u)duの正規分布に従う確率変数であ

ることを示せ。
(3) (1)と (2)を用いて I(t)がマルチンゲールであることを示せ。
(4) I2(t)−

∫ t

0
∆2(u)duがマルチンゲールであることを示せ。

解答. (1)。tl ≤ s < tl+1 となる lをとる。

I(t)− I(s) =

k−1∑
j=l+1

∆(tj) (W (tj+1)−W (tj)) + ∆(tk) (W (t)−W (tk))

+ ∆(tl) (W (tl+1)−W (tl))−∆(tl) (W (s)−W (tl))

=

k−1∑
j=l+1

∆(tj) (W (tj+1)−W (tj)) + ∆(tk) (W (t)−W (tk)) + ∆(tl) (W (tl+1)−W (s))

である。ここで W はブラウン運動であることと、∆(t) が各 0 ≤ t ≤ T について定数であることから、各
j = l+1, · · · , k− 1に対して∆(tj) (W (tj+1)−W (tj))は F(tj)と独立であり、従ってとくに F(s)とも独立
である。∆(tk) (W (t)−W (tk))もF(tk)と独立であり、特にF(s)とも独立である。∆(tl) (W (tl+1)−W (s))

も F(s)と独立である。以上ですべての項が F(s)と独立であることが示された。
(2)。∆(t)は区間 [tl, tl+1)で一定の値をとる定数であるから、s ∈ [tl, tl+1)であることから、∆(tl) = ∆(s)

である。従って分割 0 = u0 < u1 = s < u2 = tl+1 ≤ · · · ≤ un+1−l = tn ≤ un+2−l = t ≤ T に対して、
m = n+ 2− lとおけば、

I(t)− I(s) =

m−1∑
j=1

∆(uj) (W (uj+1)−W (uj))

となる。W はブラウン運動であるから、各W (uj−1)−W (uj)たちは互いに独立な正規確率変数であり、その
平均は 0で分散は uj−1−uj である。また∆(t)は定数であるから、従って各∆(uj) (W (uj+1)−W (uj)) , j =
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1, · · · ,m− 1 は互いに独立で、平均はどれも 0、分散は ∆(uj)
2(uj+1 − uj), j = 2, · · · ,m− 1である。従っ

てこれらの和である I(t)− I(s)は平均 0で分散が
m−1∑
j=1

∆(uj)
2(uj+1 − uj) =

∫ t

s

∆2(u)du

の正規確率変数である。
(3)。0 ≤ s < t ≤ T をとる。uj は (2) の解答のとおりとする。各 j > 1 に対して W (uj+1) − W (uj) は

W (uj)−W (0) = W (uj)、つまり F(uj)と独立であり、s < uj であるから、従ってとくに F(s)とも独立で
ある。以上より I(t)− I(s)は F(s)と独立であり、従って

E [I(t)|F(s)] = E [I(t)− I(s)|F(s)] + E [I(s)|F(s)]

= E [I(t)− I(s)] + I(s)

となる。ここで (2)より E [I(t)− I(s)] = 0であるから、E [I(t)|F(s)] = I(s)がわかる。つまり I はマルチ
ンゲールである。
(4)。I(t)− I(s)は平均 0で分散 ∫ t

s
∆2(u)duの確率変数であるから、E[(I(t)− I(s))2] =

∫ t

s
∆2(u)duであ

る。よって既知量の括り出しと線形性から

E
[
I2(t)−

∫ t

0

∆2(u)du

∣∣∣∣F(s)

]
= E

[
(I(t)− I(s))2 + 2I(s)I(t)− I2(s)−

∫ t

0

∆2(u)du

∣∣∣∣F(s)

]
= E

[
(I(t)− I(s))2

∣∣F(s)
]
+ 2I(s)E [I(t)|F(s)]

− I2(s)−
∫ t

0

∆2(u)du

となるが、(1)より I(t)− I(s)は F(s)と独立であり、また (3)より I はマルチンゲールであるから、

= E
[
(I(t)− I(s))2

]
+ 2I(s)2 − I2(s)−

∫ t

0

∆2(u)du

=

∫ t

s

∆2(u)du+ I(s)2 −
∫ t

0

∆2(u)du

= I2(s)−
∫ s

0

∆2(u)du

となる。以上で I2(t)−
∫ t

0
∆2(u)duはマルチンゲールである。

練習問題 4.3. 4.2における ∆(t)が確定的でない (普通の) 単関数であるとする。t0 = 0, t1 = s, t2 = tとす
る (tは定数！)。∆(0)は定数である。∆(s) = W (s)とする。次のうち正しいのはどれか？理由も述べよ：

(1) I(t)− I(s)は F(s)と独立である。
(2) I(t)− I(s)は正規分布に従う。
(3) E [I(t)|F(s)] = I(s)である。
(4) E

[
I2(t)−

∫ t

0
∆2(u)du

∣∣∣F(s)
]
= I2(s)−

∫ s

0
∆2(u)duである。

解答. まず I(t)− I(s)の n-次モーメント ((I(t)− I(s))n の期待値) を計算する。∆(0)は定数なのでこれを c
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と置く。定義に基づいて計算すると

I(s) = ∆(0)W (s) = cW (s)

I(t)− I(s) = W (s) (W (t)−W (s))

I(t) = W (s) (W (t)−W (s)) + cW (s)

となる。W はブラウン運動なので、W (s)とW (t)−W (s)は独立であり、それぞれ平均 0で分散が sと t− s

の正規確率変数である。よって、

E[(I(t)− I(s))n] = E[W (s)n]E[(W (t)−W (s))n]

=
1√
2πs

∫ ∞

−∞
xne−x2/2sdx

1√
2π(t− s)

∫ ∞

−∞
yne−y2/2(t−s)dy

=
1

2π
√

s(t− s)

∫∫
R2

(xy)ne−x2/2s−y2/2(t−s)dxdy

=

√
sn(t− s)n

2π

∫∫
R2

(xy)ne−x2/2−y2/2dxdy

=

√
sn(t− s)n

2π

∫ ∞

0

∫ 2π

0

r2n+1 cosn θ sinn θe−r2/2dθdr

=

√
sn(t− s)n

2π

∫ ∞

0

r2n+1e−r2/2dr

∫ 2π

0

cosn θ sinn θdθ

=

√
sn(t− s)n

2π

∫ ∞

0

rn1 e
−r1dr1

∫ 2π

0

sinn(θ)dθ

となる。ここで uに関する関数の等式 ∫ ∞

0

e−rudr =
1

u

を n回微分して u = 1を代入することで ∫ ∞

0

rne−rdr = (−1)nn!

を得る。また nが奇数であれば ∫ 2π

0
sinn θdθ = 0であるが、偶数であれば∫ 2π

0

sinn θdθ = [− cos θ sinn−1 θ]2π0 − (n− 1)

∫ 2π

0

cos2 θ sinn−2 θdθ

= −(n− 1)

∫ 2π

0

sinn θdθ + (n− 1)

∫ 2π

0

sinn−2 θdθ

であるから、nについて帰納的に、∫ 2π

0

sinn(θ)dθ =
(n− 1)(n− 3) · · · 1

n(n− 2) · · · 2

∫ 2π

0

sin0 θdθ = 2π
(n− 1)(n− 3) · · · 1

n(n− 2) · · · 2

となる。よって nが奇数のときは E[(I(t)− I(s))n] = 0で、偶数のときには

E[(I(t)− I(s))n] = (n− 1)2(n− 3)2 · · · 12 ·
√
sn(t− s)n

となる。この計算結果を用いる。
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(1)は偽である。もし I(t)−I(s)とF(s)が独立であれば、W (s)がF(s)-可測であることから、(I(t)−I(s))2

とW 2(s)も独立でなければならず、従って

E[W 2(s)(I(t)− I(s))2] = E[W 2(s)]E[(I(t)− I(s))2] = s2(t− s)

となるはずであるが、一方でW (s)とW (t)−W (s)は独立なので、

E[W 2(s)(I(t)− I(s))2] = E[W 4(s)(W (t)−W (s))2] = E[W 4(s)]E[(W (t)− (s))2] = 3s2(t− s)

となり、これは矛盾である。
(2) は偽である。もし I(t) − I(s) が正規分布であるならば、E[I(t) − I(s)] = 0 であることから分散が

E[(I(t)− I(s))2] = t− sとなり、このことと I(t)− I(s)の正規性から 4次モーメントが E[(I(t)− I(s))4] =

3(t− s)2 となるはずであるが、実際には E[(I(t)− I(s))4] = 9s2(t− s)2 である。
(3)は真である。E [I(t)|F(s)]を計算すれば、

E [I(t)|F(s)] = E [I(t)− I(s)|F(s)] + I(s)

= E [W (s) (W (t)−W (s))|F(s)] + I(s)

= W (s)E [W (t)−W (s)] + I(s)

= I(s)

となる。
(4)は真である。E

[
I2(t)−

∫ t

0
∆2(u)du

∣∣∣F(s)
]
を計算すれば、

E
[
I2(t)−

∫ t

0

∆2(u)du

∣∣∣∣F(s)

]
= E[I2(s) + 2I(s)W (s)(W (t)−W (s)) +W 2(s)(W (t)−W (s))2

−∆2(0)s−W 2(s)(t− s) | F(s)]

⋆
= I2(s) + 2I(s)W (s)E [W (t)−W (s)|F(s)]

+W 2(s)E
[
(W (t)−W (s))2

∣∣F(s)
]
−∆2(0)s−W 2(s)(t− s)

♠
= I2(s) + 2I(s)W (s)E[W (t)−W (s)] +W 2(s)E[(W (t)−W (s))2]

−∆2(0)s−W 2(s)(t− s)

♣
= I2(s) +W 2(s)(t− s)−∆2(0)s−W 2(s)(t− s)

= I2(s)−∆2(0)s

= I2(s)−
∫ s

0

∆2(u)du

となる。ただし⋆の箇所で既知量の括り出しを行い、♠の箇所でW (t)−W (s)が F(s)と独立であることを
用い、♣の箇所でW (t)−W (s)が平均 0で分散 t− sの正規確率変数であることを用いた。

練習問題 4.4. [ストラノヴィッチ積分] W (t), t ≥ 0 をブラウン運動、T > 0 を定数、Π = (0 = t0 < t1 <

· · · < tn = T )を [0, T ]の分割、t∗j :
def
= (tj + tj+1)/2, (j = 0, · · · , n− 1)とする。

(1)

QΠ/2 :
def
=

n−1∑
j=0

(W (t∗j )−W (tj))
2

と定める。‖Π‖ → 0のもとで QΠ/2 → T/2であることを示せ。
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(2) W (t)に関するW (t)のストラノヴィッチ積分を次で定義する：
∫ T

0

W (t) ◦ dW (t) :
def
= lim

∥Π∥→0

n−1∑
j=0

W (t∗j ) (W (tj+1)−W (tj)) .

次を示せ： ∫ T

0

W (t) ◦ dW (t) =
1

2
W 2(T ).

解答. (1)。示すべきことは E[QΠ/2] = T/2と

0 ≤ E[Q2
Π/2 − E[QΠ/2]

2] = Var(QΠ/2) → 0 , (‖Π‖ → 0)

の 2つである。期待値の方は、W (t∗j )−W (tj)が平均 0で分散 t∗j − tj = (tj+1 − tj)/2の正規確率変数であ
ることから、線形性を用いて

E[QΠ/2] = E

n−1∑
j=0

(W (t∗j )−W (tj))
2


=

n−1∑
j=0

E
[
(W (t∗j )−W (tj))

2
]

=
1

2

n−1∑
j=0

(tj+1 − tj)

=
1

2
T

となる。分散の方を計算する。W (t∗j )−W (tj)らは互いに独立であるから、

Var(QΠ/2) =

n−1∑
j=0

Var
((

W (t∗j )−W (tj)
)2)

である。各 j に対する Var
((

W (t∗j )−W (tj)
)2) を計算する。

Var
((

W (t∗j )−W (tj)
)2)

= E
[(
W (t∗j )−W (tj)

)4]− E
[(
W (t∗j )−W (tj)

)2]2
であるが、W (t∗j ) − W (tj) は平均 0 で分散 t∗j − tj = (tj+1 − tj)/2 の正規確率変数であるから、
E
[(
W (t∗j )−W (tj)

)2]
= (tj+1 − tj)/2 と E

[(
W (t∗j )−W (tj)

)4]
= 3(tj+1 − tj)

2/4 がわかる。以上より

Var(QΠ/2) =
3

4

n−1∑
j=0

(tj+1 − tj)
2 − 1

4

n−1∑
j=0

(tj+1 − tj)
2 =

1

2

n−1∑
j=0

(tj+1 − tj)
2

がわかる。ここで ‖Π‖が最大の区間の長さであることから、

Var(QΠ/2) ≤
Π

2

n−1∑
j=0

(tj+1 − tj) =
ΠT

2
→ 0

がわかる。以上で示された。
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(2)。

RΠ/2 :
def
=

n−1∑
j=0

(W (tj+1)−W (t∗j ))
2

と定めると、(1)とブラウン運動の二次変分の公式 (定理 3.4.3) より

RΠ/2 → 1

2
T , (‖Π‖ → 0)

となる。
W 2(T ) =

n−1∑
j=0

(
W 2(tj+1)−W 2(tj)

)
と考えると、

n−1∑
j=0

W (t∗j ) (W (tj+1)−W (tj))−
n−1∑
j=0

(
W 2(tj+1)−W 2(tj)

)
= 2

n−1∑
j=0

(W (tj+1)−W (tj))
(
W (tj+1) +W (tj)− 2W (t∗j )

)
= 2

n−1∑
j=0

((
W (tj+1)−W (t∗j )

)
+
(
W (t∗j )−W (tj)

)) ((
W (tj+1)−W (t∗j )

)
−
(
W (t∗j )−W (tj)

))
= 2

n−1∑
j=0

((
W (tj+1)−W (t∗j )

)2 − (W (t∗j )−W (tj)
)2)

= 2QΠ/2 − 2RΠ/2

→ T − T = 0 , (‖Π‖ → 0)

となる。よって所望の等式を得る。

練習問題 4.5. W (t)をブラウン運動、α(t), σ(t)をW (t)に関する filtration F(t), t ≥ 0 に適合する確率過程
とする。S(t)を確率過程であって、さらに以下の方程式を満たすとする：

dS(t) = α(t)S(t)dt+ σ(t)S(t)dW (t).

(1) d logS(t)を計算せよ。
(2) 以下の等式を示せ：

S(t) = S(0) exp

(∫ t

0

σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds

)
.

解答. (1)。伊藤の公式と dtdt = dtdW (t) = 0, dW (t)dW (t) = dtと S(t)の満たす微分方程式を用いれば

d logS(t) =
1

S(t)
dS(t)− 1

2S2(t)
dS(t)dS(t)

=
1

S(t)
(α(t)S(t)dt+ σ(t)S(t)dW (t))− 1

2S2(t)
(α(t)S(t)dt+ σ(t)S(t)dW (t))

2

= α(t)dt+ σ(t)dW (t)− 1

2
(α(t)dt+ σ(t)dW (t))

2

= α(t)dt+ σ(t)dW (t)− 1

2
σ2(t)dt

= σ(t)dW (t) +

(
α(t)− 1

2
σ2(t)

)
dt
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となる。
(2)。d logS(t)を [0, t]で積分することで

log

(
S(t)

S(0)

)
=

∫ t

0

σ(s)dW (s) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds

となるので整理すれば所望の式を得る。

練習問題 4.6. W をブラウン運動として

S(t) :
def
= S(0) exp

(
σW (t) +

(
α− 1

2
σ2

)
t

)
を幾何ブラウン運動とし、p > 0を定数とする。S(t)の p乗の微分 dSp(t)を計算せよ。

解答. p > 0より p− 1 6= −1である。

f(t, x) :
def
= S(0)p exp

(
pσx+ p

(
α− 1

2
σ2

)
t

)
とおく。すると Sp(t) = f(t,W (t))である。また、

ft(t, x) = pSp(0)

(
α− 1

2
σ2

)
exp

(
pσx+ p

(
α− 1

2
σ2

)
t

)
= p

(
α− 1

2
σ2

)
f(t, x)

fx(t, x) = pSp(0)σ exp

(
pσx+ p

(
α− 1

2
σ2

)
t

)
= pσf(t, x)

fx,x(t, x) = (pσf(t, x))x = p2σ2f(t, x)

となる。従って伊藤の公式より

dSp(t) = df(t,W (t))

= ft(t,W (t))dt+ fx(t,W (t))dW (t) +
1

2
fx,x(t,W (t))dW (t)dW (t)

= p

(
α− 1

2
σ2

)
Sp(t)dt+ pσSp(t)dW (t) +

1

2
p2σ2Sp(t)dt

= p

(
α+

p− 1

2
σ2

)
Sp(t)dt+ pσSp(t)dW (t)

となる。
別解答. g(t, x) :

def
= S(0) exp

(
σx+

(
α− 1

2σ
2
)
t
) と置いて伊藤の公式を用い、

dS(t) =

(
α− 1

2
σ2

)
S(t)dt+ σS(t)dW (t) +

1

2
σ2S(t)dW (t)dW (t)

=

(
α+

1

2
σ2

)
S(t)dt+ σS(t)dW (t)

と計算してから

dS(t)dS(t) =

((
α+

1

2
σ2

)
S(t)dt+ σS(t)dW (t)

)2

= σ2S2(t)dW (t)dW (t)

= σ2S2(t)dt
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と計算したのち

dSp(t) = pSp−1(t)dS(t) +
1

2
p(p− 1)Sp−2dS(t)dS(t)

= p

(
α+

1

2
σ2

)
Sp(t)dt+ pσSp(t)dW (t) +

1

2
p(p− 1)σ2Sp(t)dt

= p

(
α+

p− 1

2
σ2

)
Sp(t)dt+ pσSp(t)dW (t)

としても同じ結果が得られる。

練習問題 4.7. W をブラウン運動とする

(1) dW 4(t)を計算してW 4(t)を求めよ。
(2) E[W 4(T )] = 3T 2 を示せ。
(3) E[W 6(T )]を求めよ。

解答. (1)。伊藤の公式から

dW 4(t) = 4W 3(t)dW (t) +
1

2
4 · 3W 2(t)dW (t)dW (t) = 4W 3(t)dW (t) + 6W 2(t)dt

であるから、積分すれば
W 4(T ) = 4

∫ T

0

W 3(t)dW (t) + 6

∫ T

0

W 2(t)dt

を得る。
(2)。伊藤積分はマルチンゲールであるから期待値は I(0) = 0である。従って

E
∫ T

0

W 3(t)dW (t) = 0

である。また、等長性から

E
∫ T

0

W 2(t)dt = E

(∫ T

0

W (t)dW (t)

)2
 =

1

4
E
[(
W 2(T )− T

)2]
=

1

4
E[W 4(T )]− 1

2
TE[W 2(T )] +

1

4
T 2

となる。W 2(T )は平均 0で分散 T の正規分布であるから、以上より

E[W 4(T )] =
6

4
E[W 4(T )]− 6

2
T 2 +

6

4
T 2

となって所望の式 E[W 4(T )] = 3T 2 を得る。
(3)。伊藤の公式から

dW 6(t) = 6W 5(t)dW (t) + 15W 4(t)dt

であるから、積分して
W 6(T ) = 6

∫ T

0

W 5(t)dW (t) + 15

∫ T

0

W 4(t)dt

を得る。期待値をとれば、伊藤積分の部分は 0となって、

E[W 6(T )] = 15E
∫ T

0

W 4(t)dt
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となる。ここで

E
∫ T

0

W 4(t)dt =

∫
Ω

∫ T

0

W 4(t)dtdP =

∫ T

0

∫
Ω

W 4(t)dPdt =
∫ T

0

E[W 4(t)]dt =

∫ T

0

3t2dt = T 3

なので求める期待値は E[W 6(T )] = 15T 3 となる。

練習問題 4.8. α, β, σ > 0を定数とし、ブラウン運動W に対して確率過程 Rは以下の確率微分方程式を満た
すとする：

dR(t) = (α− βR(t)) dt+ σdW (t).

(1) d
(
eβtR(t)

)を計算せよ。これを R(t)を含まない式に整理せよ。
(2) 上の確率微分方程式を解け (式 (4.4.33)を得よ)。

解答. (1)。f(t, x) = eβtxとおく。

ft(t, x) = βeβtx

fx(t, x) = eβt

fx,x(t, x) = 0

である。伊藤の公式と与えられた微分方程式を用いて

d
(
eβtR(t)

)
= βeβtR(t)dt+ eβtdR(t)

= βeβtR(t)dt+ (α− βR(t)) eβtdt+ σeβtdW (t)

= αeβtdt+ σeβtdW (t)

となる。
(2)。積分すれば

eβtR(t)−R(0) = α

∫ t

0

eβudu+ σ

∫ t

0

eβudW (u) =
α

β
(eβt − 1) + σ

∫ t

0

eβudW (u)

となるから、整理して

R(t) = R(0)e−βt +
α

β
(1− e−βt) + σe−βt

∫ t

0

eβudW (u)

を得る。

練習問題 4.9. T,K, σ, r ∈ Rを定数、0 ≤ t < T とし、N(y) :
def
= 1√

2π

∫ y

−∞ e−x2/2dx を標準正規の分布関数、

d+(τ, x) :
def
=

1

σ
√
τ

(
log

x

K
+

(
r +

1

2
σ2

)
τ

)
,

d−(τ, x) :
def
= d+(τ, x)− σ

√
τ ,

d± :
def
= d±(T − t, x),

と定義する。さらに
c = c(t, x) :

def
= xN(d+)−Ke−r(T−t)N(d−)

とする。
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(1) 次を示せ：
Ke−r(T−t)N ′(d−) = xN ′(d+).

(2) cx = N(d+)を示せ。
(3) 次を示せ：

ct = −rKe−r(T−t)N(d−)−
σx

2
√
T − t

N ′(d+).

(4) cが式 (4.10.3)を満たすこと、つまり

ct(t, x) + rxcx(t, x) +
1

2
σ2x2cx,x(t, x) = rc(t, x) , (0 ≤ t < T, x > 0)

を満たすことを示せ。
(5) x > K のとき limt→T− d± = ∞であり、0 < x < K のとき limt→T− d± = −∞ であることを示せ。
また、

lim
t→T−

c(t, x) = (x−K)+ , (x > 0, x 6= K)

を示せ。
(6) 0 ≤ t < T に対し、limx→0+ d± = −∞ と limx→0+ c(t, x) = 0を示せ。
(7) 0 ≤ t < T に対し limx→∞ d± = ∞ と

lim
x→∞

(
c(t, x)−

(
x− e−r(T−t)K

))
= 0

を示せ。

解答. (1)。計算する。τ = T − tとおく。N ′(y) = 1√
2π

e−y2/2 であるから、

Ke−rτ−d2
−/2 = xed

2
+/2

を示せば十分である。また d− = d+ + σ
√
τ であるから、

Ke−rτ+σ
√
τd+−σ2τ/2 = x

を示せば十分である。ここで

−rτ + σ
√
τd+ − 1

2
σ2τ = −rτ + log

x

K
+

(
r +

1

2
σ2

)
τ − σ2τ = log

x

K

であるから、
Kelog(x/K) = x

を示せば十分であるが、これは logの定義から明らかである。
(2)。T − t = τ とおく。

cx = N(d+(τ, x)) + x
d(N(d+(τ, x))

dx
−Ke−rτ d(N(d−(τ, x)))

dx

であるから、
x
d(N(d+(τ, x))

dx
−Ke−rτ d(N(d−(τ, x)))

dx
= 0
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を示せば良い。
d(N(d+(τ, x))

dx
= N ′(d+)

d(d+)

dx
d(N(d−(τ, x))

dx
= N ′(d−)

d(d−)

dx

であるが、ここで d− = d+ − σ
√
τ であるから

d(d+)

dx
=

d(d−)

dx

である。以上より示すべき等式は
xN ′(d+) = Ke−rτN ′(d−)

に帰着され、これは (1)より正しい。
(3)。

ct = xN ′(d+)
dd+
dt

− rKe−r(T−t)N(d−)−Ke−r(T−t)N ′(d−)
dd−
dt

であるが、ここで dd+/dt = dd−/dt− σ/2
√
T − t に注意すると、(1)より

ct = −rKe−r(T−t)N(d−)−
σx

2
√
T − t

N ′(d+)

を得る。これは所望の等式である。
(4)。τ = T − tとおく。示すべき式にこれまでに得られた計算結果を代入すれば、

ct + rxcx +
1

2
σ2x2cx,x − rc

= −rKe−rτN(d−)−
σx

2
√
τ
N ′(d+)

rxN(d+)− r
(
xN(d+)−Ke−rτN(d−)

)
+

1

2
σ2x2cx,x

= − σx

2
√
τ
N ′(d+) +

1

2
σ2x2cx,x

となるので、示すべき等式は
σxcx,x =

1√
τ
N ′(d+)

に帰着される。また、cx = N(d+)であるから、cx,x = N ′(d+)
dd+

dx であり、従って示すべき等式は

σx
dd+
dx

=
1√
τ

である。
d

dx

(
1

σ
√
τ

(
log

x

K
+

(
r +

1

2
σ2

)
τ

))
=

1

σ
√
τ

d

dx

(
log

x

K

)
=

1

σ
√
τ
K

1

x/K

=
1

σx
√
τ
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となるので、よってとくに
σx

dd+
dx

=
1√
τ

である。以上で示された。
(5)。t → T− のとき τ = T − t → 0であるから、極限に影響する項は 1

σ
√
T−t

log(x/K)である。x > K な
ら log(x/K) > 0であるから d± → ∞である。またこのとき N(d±) → 1であるから、c → x −K となる。
0 < x < K なら log(x/K) < 0であるから d± → −∞である。またこのとき N(d±) → 0であるから c → 0

となる。
(6)。極限に影響する項は 1

σ
√
T−t

log(x/K) である。これは x → 0+ とすると d± → −∞ となる。さらに
このとき N(d±) → 0であるから、c → 0となる。
(7)。τ = T − tとおく。極限に影響する項は 1

σ
√
τ
log(x/K)である。これは x → ∞とすると d± → ∞と

なる。またこのとき N(d±) → 1である。c− xを計算する。

c− x = x(N(d+)− 1)−Ke−r(τ)N(d−)

であるから、最後の極限を計算するには

lim
x→∞

x(N(d+)− 1) = 0

を示せば十分である。ここで x = es とおきかえれば

d+(τ, e
s) = (定数)s+ (定数)

となり、従って示すべきことは
lim
s→∞

es(1−N(s)) = 0

となる。
1−N(s) =

1√
2π

∫ ∞

s

e−u2/2du

であるから、
es(1−N(s)) =

1√
2π

∫ ∞

s

es−u2/2du

となるが、s < uのときには es < eu であるから、

0 ≤ es(1−N(s)) <
1√
2π

∫ ∞

s

eu−u2/2du =
e1/2√
2π

∫ ∞

s

e−(u+1)2/2du → 0

となる。以上で示された。

練習問題 4.10.

(1) 連続時間において、M(t) :
def
= ert をマネー・マーケット・アカウントの 1保有単位ごとの時刻 tでの価

値、∆(t)を時刻 tでの株式保有数、Γ(t)を時刻 tでのマネー・マーケット・アカウントの保有数、S(t)

を時刻 tでの株価、X(t)を株価とマネー・マーケット・アカウントの取引におけるポートフォリオと
する。つまり

X(t) :
def
= ∆(t)S(t) + Γ(t)M(t)

49



である。利益は各時刻 tにおける株価 S(t)の変動 dS とマネー・マーケット・アカウントの単位あたり
の価値M(t) = ert の変動 dM によって決まるので、

dX = ∆dS + ΓdM

であることに注意せよ。これを用いて自己資金調達条件

S(t)d∆(t) + dS(t)d∆(t) +M(t)dΓ(t) + dM(t)dΓ(t) = 0

を導け。
(2) 時刻 tでの株価 S(t)の株式 (確率過程) に対するコール・オプションを考える。コール価格は時刻 tで
株価 S(t) = xであるときに c(t, x)であるとする。コールを買って ∆(t)単位の株を得るポートフォリ
オを

N(t) :
def
= c(t, S(t))−∆(t)S(t)

とおく。ただし ∆(t) もまた確率的であることに注意。N(t) を調達するのに必要なだけの資金をマ
ネー・マーケットから運用・調達するとすると、各時刻 t での価値が X(t) :

def
= c(t, S(t)) の、株とマ

ネー・マーケット・アカウントからなるポートフォリオを保有することになる。マネー・マーケット・
アカウントの 1保有単位ごとの時刻 tでの価値をM(t)、保有数を Γ(t)とおく。

X = ∆S + ΓM

である。マネー・マーケットは瞬間的に無リスク、つまり dM(t) = rM(t)dt とする。各時刻で
∆(t) = cx(t, S(t))株保有するとき

rN(t)dt =

(
ct(t, S(t)) +

1

2
σ2S2(t)cx,x(t, S(t))

)
dt

であることを示せ。結果的に、ブラック-ショールズの偏微分方程式

ct ((t, S(t)) + rS(t)cx (t, S(t)) +
1

2
σ2S2(t)cx,x (t, S(t)) = rc (t, S(t))

を得る。

解答. (1)。X = ∆S + ΓM であるから、

dX = d(∆S + ΓM)

⋆
= ∆dS + Sd∆+ d∆dS + ΓdM +MdΓ + dMdΓ

= dX + Sd∆+ dSd∆+MdΓ + dMdΓ

となって両辺から dX を引けば所望の式を得る。ただしここで⋆の箇所に伊藤の積の公式を用いた。
(2)。自己資金調達条件 (と同値な式)

dX = ∆dS + ΓdM
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と伊藤の公式と積の公式を用いて、cx = ∆と ΓM = N に注意すると、

dN = ctdt+ cxdS +
1

2
cx,xdSdS − d(∆S)

=

(
ct +

1

2
cx,x

)
dt+ cxdS − d(X − ΓM)

=

(
ct +

1

2
cx,x

)
dt+∆dS − dX + d(ΓM)

=

(
ct +

1

2
cx,x

)
dt− ΓdM + dN

となる。両辺から dN を引き、瞬間的に無リスクであること (つまり dM(t) = rM(t)dt) に注意すると、(
ct +

1

2
cx,x

)
dt = ΓdM = rΓMdt = rNdt

がわかる。

練習問題 4.11.

解答. d(e−rtX(t))を計算すると、
d(e−rtX) = −re−rtXdt+ e−rtdX

= e−rt (−rXdt+ dX)

となる。ここで dX に条件を代入すれば、
−rXdt+ dX = dc− cxdS + r (−c+ Scx) dt

− 1

2
(σ2

2 − σ2
1)S

2cx,xdt

= ctdt+ cxdS +
1

2
cx,xdSdS − cxdS + r (−c+ Scx) dt

− 1

2
(σ2

2 − σ2
1)S

2cx,xdt

= ctdt+
1

2
cx,xdSdS + r (−c+ Scx) dt

− 1

2
(σ2

2 − σ2
1)S

2cx,xdt

となる。ここで dSdS = σ2
2S

2dWdW = σ2
2S

2dtに注意すると、

= ctdt+
1

2
cx,xσ

2
2S

2dt+ r (−c+ Scx) dt

− 1

2
(σ2

2 − σ2
1)S

2cx,xdt

= ctdt+ r (−c+ Scx) dt+
1

2
σ2
1S

2cx,xdt

=

(
−rc+ ct + rSc+

1

2
σ2
1S

2cx,x

)
dt

となる。また、cは原資産がボラティリティ σ1 の幾何ブラウン運動に従う場合のヨーロピアン・コール・オ
プションの市場価格であるから、以下のブラック-ショールズ方程式を満たす：

ct + rxcx +
1

2
σ2
1x

2cx,x = rc.
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特に x = S(t)を代入することで
ct + rScx +

1

2
σ2
1S

2cx,x = rc

を得る。以上より (
−rc+ ct + rSc+

1

2
σ2
1S

2cx,x

)
dt = 0

となって d(e−rtX) = 0がわかった。X(0) = 0なのでこれは X = 0を示している。

練習問題 4.12. (1)

(2) プットの売りポジションをヘッジするには、原資産株式を売りポジションにして、マネー・マーケッ
ト・アカウントを買いポジションにしなければならないことを示せ。

(3) f, pは cが満たすものとおなじブラック-ショールズ方程式を満たすことを示せ。

解答. (1)。p(t, x) = c(t, x)− f(t, x) = c(t, x)−x+ e−r(T−t)K であるから、練習問題 4.9の結果を用いると、

px(t, x) = cx(t, x)− 1 = N(d+)− 1

px,x(t, x) = cx,x(t, x) =
1

σx
√
T − t

N ′(d+)

pt(t, x) = re−r(T−t)K + ct(t, x) = re−r(T−t)K (1−N(d−))−
σx

2
√
T − t

N ′(d+)

= re−r(T−t)KN(−d−)−
σx

2
√
T − t

N ′(d+)

となる。
(2)。オプションの売りのヘッジのために保有する原資産株式の枚数は px(t, x) である (本書 4.5.3 節 式

(4.5.11)直後の文章) から、px(t, x) = N(d+)− 1 < 0ことからこの場合には原資産株式は売りポジションで
なければならない。マネー・マーケット・アカウントは逆に買いポジションである。
(3)。f = c− pなので f について確認すれば十分である。

fx(t, x) = 1,

fx,x(t, x) = 0,

ft(t, x) = −rKe−r(T−t)

であるから、
ft(t, x) + rxfx(t, x)

1

2
σ2x2fx,x(t, x) = −rKe−r(T−t) + rx = rf(t, x)

となって確認できた。

練習問題 4.13.

解答. B1 = W1 だからW1 はブラウン運動である。B1 はブラウン運動なので dB1dB1 = dtであり、

dB1dB2 = dB1

(
ρdB1 +

√
1− ρ2dW2

)
= ρdB1dB1 +

√
1− ρdB1dW2

= ρdt+
√
1− ρdB1dW2
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となる。ここで dB1dB2 = ρdtであることから、√1− ρdB1dW2 = 0を得る。−1 < ρ < 1と B1 = W1 から
dW1dW2 = 0を得る。また、

dB2dB2 = ρ2dW1dW1 + 2ρ
√
1− ρ2dW1dW2 + (1− ρ2)dW2dW2

= ρ2dt+ (1− ρ2)dW2dW2

であるが、B2 もブラウン運動なので dB2dB2 = dtであり、従って (1 − ρ2)dW2dW2 = (1 − ρ2)dt、つまり
dW2dW2 = dtを得る。以上の計算結果とレヴィの定理 (4.6.5) を用いれば、W1,W2 が独立なブラウン運動
であることがわかる。

練習問題 4.14. (1)

(2)

(3)

解答. (1)。f ′′ が可測であることと F が W に関する filtration であることから Zj は F(tj+1)-可測である。
期待値を計算する。線形性と既知量の括り出し、W がブラウン運動であるからW (tj+1)−W (tj)が F(tj)と
独立であることを用いて、

E [Zj |F(tj)] = E
[
f ′′(W (tj))

(
(W (tj+1)−W (tj))

2 − (tj+1 − tj)
)∣∣∣F(tj)

]
= f ′′(W (tj))

(
E
[
(W (tj+1)−W (tj))

2
∣∣∣F(tj)

]
− (tj+1 − tj)

)
= f ′′(W (tj))

(
E
[
(W (tj+1)−W (tj))

2
]
− (tj+1 − tj)

)
となる。W はブラウン運動なのでW (tj+1)−W (t)は平均 0で分散 tj+1 − tj の正規確率変数であり、従って

E
[
(W (tj+1)−W (tj))

2
]
− (tj+1 − tj) = 0

である。以上より E [Zj |F(tj)] = 0である。
4次モーメントが E[(W (tj+1)−W (tj))

4
] = 3(tj+1 − tj)

2 であることを思い出すと、

E
[
Z2
j

∣∣F(tj)
]

= E
[
f ′′(W (tj))

2
(
(W (tj+1)−W (tj))

4 − 2(tj+1 − tj) (W (tj+1)−W (tj))
2
+ (tj+1 − tj)

2
)∣∣∣F(tj)

]
= f ′′(W (tj))

2
(
E
[
(W (tj+1)−W (tj))

4
]
− 2(tj+1 − tj)E

[
(W (tj+1)−W (tj))

2
]
+ (tj+1 − tj)

2
)

= f ′′(W (tj))
2
(
3(tj+1 − tj)

2 − 2(tj+1 − tj)
2 + (tj+1 − tj)

2
)

= 2f ′′(W (tj))
2(tj+1 − tj)

2

となる。
(2)。f ′′(W (tj))と (W (tj+1)−W (tj))

2 は独立なので

E[
n−1∑
j=0

Zj ]

= E

n−1∑
j=0

f ′′(W (tj))
(
(W (tj+1)−W (tj))

2 − (tj+1 − tj)
)
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=

n−1∑
j=0

E[f ′′(W (tj))]
(
E[(W (tj+1)−W (tj))

2]− (tj+1 − tj)
)

=

n−1∑
j=0

E[f ′′(W (tj))] ((tj+1 − tj)− (tj+1 − tj)) = 0

である。別解答. (1)より

E[
n−1∑
j=0

Zj ] =

n−1∑
j=0

E[E[Zj | F(tj)] = 0.

(3)。j < k とすると Zj は F(tk)-可測であるから

E[ZjZk] = E[E[ZjZk | F(tk)]] = E[ZjE[Zk | F(tk)]] = E[0] = 0

となる。よって

Var(
n−1∑
j=0

Zj) = E


n−1∑

j=0

Zj

2


=

n−1∑
j=0

E[Z2
j ] +

∑
j ̸=k

E[ZjZk]

= 2

n−1∑
j=0

E[f ′′(W (tj))
2](tj+1 − tj)

2

< 2‖Π‖
n−1∑
j=0

E[f ′′(W (tj))
2](tj+1 − tj)

→ 0 · E
∫ T

0

f ′′(W (tj))
2dt = 0 , (‖Π‖ → 0)

となる。

練習問題 4.15. (1)

(2)

解答. (1)。dBi =
∑

j
σij

σi
dWj であることと、

∑
j σ

2
ij = σ2

i とWj らが違いに独立なブラウン運動であること
から、

dBidBi =

∑
j

σij

σi
dWj

2

=
∑
j1,j2

σij1σij2

σ2
i

dWj1dWj2 =
∑
j

σ2
ij

σ2
i

(dWj)
2

=
1

σ2
i

d∑
j=1

σ2
ijdt = dt

である。よって Bi はブラウン運動である。
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(2)。

dBidBk =

∑
j

σij

σi
dWj

∑
j

σik

σk
dWj


=
∑
j1,j2

σij1σkj2

σiσk
dWj1dWj2

=

d∑
j=0

σijσkj

σiσk
(dWj)

2

=

d∑
j=0

σijσkj

σiσk
dt

= ρik(t)dt

である。

練習問題 4.16.

解答. Wi(t) :
def
=
∑m

j=1

∫ t

0
αij(u)dB(u)とおく。まず dWj =

∑m
k=1 αjkdBk であるから、

m∑
j=1

∫ t

0

aij(u)dWj(u) =

m∑
j=1

∫ t

0

aij(u)

(
m∑

k=1

αjkdBk(u)

)

=

m∑
j=1

m∑
k=1

∫ t

0

aij(u)αjkdBk(u)

=

m∑
k=1

∫ t

0

m∑
j=1

aij(u)αjkdBk(u)

=

∫ t

0

dBi(u) = B(t)

となるので Wj らは条件式 (4.10.27) を満たす。あとは Wj たちが独立なブラウン運動であることを示せば
良い。

dWidWk =

 m∑
j=1

αijdBj

 m∑
j=1

αkjdBj


=

m∑
j1=1

m∑
j2=1

αij1αkj2dBj1dBj2

=

m∑
j1=1

m∑
j2=1

αij1αkj2ρj1j2dt

=

m∑
j1=1

m∑
j2=1

αij1αkj2

m∑
l=1

aj1laj2ldt

=

m∑
l=1

 m∑
j1=1

αij1aj1l

 m∑
j2=1

αkj2aj2l

 dt

=

m∑
l=1

δilδkldt
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= δikdt

であるから、とくに i = k なら (dWi)
2 = dt であり、i 6= k であれば dWidWk = 0 である。以上で示され

た。

練習問題 4.17. (1)

(2)

(3)

(4)

(5)

(6)

解答. (1)。既知量の括り出しより

E[(B1(t0 + ε)−B1(t0))(B2(t0 + ε)−B2(t0)) | F(t0)]

= E[B1(t0 + ε)(B2(t0 + ε) | F(t0)]−B1(t0)E[B2(t0 + ε) | F(t0)]

−B2(t0)E[B1(t0 + ε) | F(t0)] +B1(t0)B2(t0)

となるが、B1, B2 はブラウン運動なのでマルチンゲールであり、従って

= E[B1(t0 + ε)(B2(t0 + ε) | F(t0)]−B1(t0)B2(t0)

となる。伊藤の積の公式より

d(B1B2) = B1dB2 +B2dB1 + dB1dB2 = B1dB2 +B2dB1 + ρdt

なので、これを ∫ t0+ε

0
と ∫ t0

0
で積分すれば、

B1(t0 + ε)B2(t0 + ε) =

∫ t0+ε

0

(B1dB2 +B2dB1) + ρ(t0 + ε)

B1(t0)B2(t0) =

∫ t0

0

(B1dB2 +B2dB1) + ρ(t0)

となる。一つ目で E[(−) | F(t0)]をとれば、伊藤積分のマルチンゲール性と二つ目の式から

E[B1(t0 + ε)(B2(t0 + ε) | F(t0)] =

∫ t0

0

(B1dB2 +B2dB1) + ρ(t0 + ε) = B1(t0)B2(t0) + ρε

がわかる。以上より

E[(B1(t0+ε)−B1(t0))(B2(t0+ε)−B2(t0)) | F(t0)] = E[B1(t0+ε)(B2(t0+ε) | F(t0)]−B1(t0)B2(t0) = ρε

となる。これは所望の結果である。
(2)。B′

i :
def
= Bi(t0 + ε)−Bi(t0)とおく。

Xi(t0 + ε)−Xi(t0) = εΘi + σiB
′
i

(Xi(t0 + ε)−Xi(t0))
2 = ε2Θ2

i + σ2
i (B

′
i)

2 + 2εΘiσiB
′
i

(X1(t0 + ε)−X1(t0))(X2(t0 + ε)−X2(t0)) = ε2Θ1Θ2 + σ1σ2B
′
1B

′
2 + ε(Θ1σ2B2 +Θ2σ1B1)
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であるまた Bi はブラウン運動なので B′
i = Bi(t0 + ε)−Bi(t0)は F(t0)と独立な平均 0分散 εの正規確率変

数であることに注意すると、

E[B′
i | F(t0)] = E[B′

i] = 0,E[(B′
i)

2 | F ] = E[(B′
i)

2] = ε

であり、さらに (1)より E[B′
1B

′
2 | F(t0)] = ρεであるから、

E[Xi(t0 + ε)−Xi(t0) | F(t0)] = E[εΘi + σiB
′
i | F(t0)] = εΘi,

E[(Xi(t0 + ε)−Xi(t0))
2 | F(t0)] = E[ε2Θ2

i + σ2
i (B

′
i)

2 + 2εΘiσiB
′
i] = ε2Θ2

i + σ2
i ε,

E[(X1(t0 + ε)−X1(t0))(X2(t0 + ε)−X2(t0))]

= E[ε2Θ1Θ2 + σ1σ2B
′
1B

′
2 + ε(Θ1σ2B2 +Θ2σ1B1)] = ε2Θ1Θ2 + ρσ1σ2ε

となる。これらは所望の結果である。また相関が ρ であることも上の結果を適用して単純計算によって示さ
れる。
(3)。

Xi(t0 + ε)−Xi(t0) =

∫ t0+ε

t0

Θidu+

∫ t0+ε

0

σidBi −
∫ t0

0

σdBi

であるが、伊藤積分はマルチンゲールであるから、条件つき期待値 E[(−) | F(t0)]を取れば右辺の第二項と第
三項が相殺して

Mi(ε) :
def
= E[Xi(t0 + ε)−Xi(t0) | F(t0)] = E

[∫ t0+ε

t0

Θi(u)du

∣∣∣∣F(t0)

]
となる。また、

1

ε

∫ t0+ε

t0

Θi(u)du → Θi(t0) , (ε → 0+)

であるから、従って

lim
ε→0+

1

ε
Mi(ε) = lim

ε→0+
E
[
1

ε

∫ t0+ε

t0

Θi(u)du

∣∣∣∣F(t0)

]
= E [Θi(t0)|F(t0)]

= Θi(t0)

である。
(4)。dYi = σidBi とおき、Y ′

i = Yi(t0 + ε) − Yi(t0) とおく。伊藤積分 Yi はマルチンゲールなので
E[Y ′

i | F(t0)] = 0である。

Xi(t0 + ε)−Xi(t0) =

∫ t0+ε

t0

Θidu+ Y ′
i = εΘi(t0) + Y ′

i + o(ε)
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であるから、

E[(X1(t0 + ε)−X1(t0))(X2(t0 + ε)−X2(t0)) | F(t0)]

= E[ε2Θ1(t0)Θ2(t0) + o(ε) | F(t0)] + E[εY ′
1Θ2(t0) + εY ′

2Θ1(t0) + o(ε) | F(t0)] + E[Y ′
1Y

′
2 | F(t0)]

= ε (Θ2(t0)E[Y ′
1 | F(t0)] + Θ1(t0)E[Y ′

2 | F(t0)]) + o(ε) + E[Y ′
1Y

′
2 | F(t0)]

= E[Y ′
1Y

′
2 | F(t0)] + o(ε)

= E[(Y1(t0 + ε)− Y1(t0))(Y2(t0 + ε)− Y2(t0)) | F(t0)] + o(ε)

= E[Y1(t0 + ε)Y2(t0 + ε) | F(t0)] + Y1(t0)Y2(t0)

− Y1(t0)E[Y2(t0 + ε) | F(t0)]− Y2(t0)E[Y1(t0 + ε) | F(t0)] + o(ε)

= E[Y1(t0 + ε)Y2(t0 + ε) | F(t0)]− Y1(t0)Y2(t0) + o(ε)

となる。さて、ここで伊藤の積の公式と dYi = σidBi, dB1dB2 = ρdtから、

d(Y1Y2) = Y1dY2 + Y2dY1 + dY1dY2

= σ2Y1dB2 + σ1Y2dB1 + σ1σ2dB1dB2

= σ2Y1dB2 + σ1Y2dB1 + ρσ1σ2dt

となる。これを ∫ t0+ε

0
と ∫ t0

0
で積分して、

Y1(t0 + ε)Y2(t0 + ε) =

∫ t0+ε

0

(σ2Y1dB2 + σ1Y2dB1) +

∫ t0+ε

0

ρσ1σ2dt

Y1(t0)Y2(t0) =

∫ t0

0

(σ2Y1dB2 + σ1Y2dB1) +

∫ t0

0

ρσ1σ2dt

を得る。一つ目の式で E[(−) | F(t0)]をとって、伊藤積分のマルチンゲール性と二つ目の式を使えば、

E[Y1(t0 + ε)Y2(t0 + ε) | F(t0)]

= E
[∫ t0+ε

0

(σ2Y1dB2 + σ1Y2dB1) +

∫ t0+ε

0

ρσ1σ2dt

∣∣∣∣F(t0)

]
=

∫ t0

0

(σ2Y1dB2 + σ1Y2dB1) + E
[∫ t0+ε

0

ρσ1σ2dt

∣∣∣∣F(t0)

]
=

∫ t0

0

(σ2Y1dB2 + σ1Y2dB1) +

∫ t0

0

ρσ1σ2dt+ E
[∫ t0+ε

t0

ρσ1σ2dt

∣∣∣∣F(t0)

]
= Y1(t0)Y2(t0) + E

[∫ t0+ε

t0

ρσ1σ2dt

∣∣∣∣F(t0)

]
となる。以上より

E[(X1(t0 + ε)−X1(t0))(X2(t0 + ε)−X2(t0)) | F(t0)]

= E[Y1(t0 + ε)Y2(t0 + ε) | F(t0)]− Y1(t0)Y2(t0) + o(ε)

= E
[∫ t0+ε

t0

ρσ1σ2dt

∣∣∣∣F(t0)

]
+ o(ε)

= E [ρ(t0)σ1(t0)σ2(t0) + o(ε)|F(t0)] + o(ε)

= ρ(t0)σ1(t0)σ2(t0) + o(ε)

となって所望の式が得られた。
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疑問：そもそもM1(ε)M2(ε) = ε2Θ1(t0)Θ2(t0) + o(ε) = o(ε)なのでは？まあ単純なケースとの比較と思
えばこの項がある方が自然だけれど。
(5)。共分散の方は (4)の計算結果そのままだから分散の方を求める。今までに定めた記号などはそのまま
流用する。計算すれば

E[(Xi(t0 + ε)−Xi(t0))
2 | F(t0)]

= E
[
(εΘ(t0) + Y ′

i + o(ε))
2
∣∣∣F(t0)

]
= E

[
2εΘ(t0)Y

′
i + (Y ′

i )
2 + o(ε)

∣∣F(t0)
]

= 2εΘ(t0)E [Y ′
i |F(t0)] + E

[
(Y ′

i )
2
∣∣]+ o(ε)

= E
[
(Y ′

i )
2
∣∣]+ o(ε)

= E
[
(Yi(t0 + ε)− Yi(t0))

2
∣∣]+ o(ε)

= E
[
Y 2
i (t0 + ε)

∣∣]− 2Yi(t0)E [Yi(t0 + ε)|] + Y 2
i (t0) + o(ε)

= E
[
Y 2
i (t0 + ε)

∣∣]− Y 2
i (t0) + o(ε)

となる (最後の方は伊藤積分のマルチンゲール性などを使っている)。ここで伊藤の公式より

d(Y 2
i ) = 2YidYi + (dYi)

2 = 2σiYidYi + σ2
i (dBi)

2 = 2σiYidYi + σ2
i dt

である (Bi はブラウン運動であるから (dBi)
2 = dtである)。これを ∫ t0+ε

0
と ∫ t0

0
で積分して、

Y 2
i (t0 + ε) =

∫ t0+ε

0

2σiYidYi +

∫ t0+ε

0

σ2
i dt,

Y 2
i (t0) =

∫ t0

0

2σiYidYi +

∫ t0

0

σ2
i dt

を得る。一つ目の式で条件付き期待値 E[(−) | F(t0)]をとって伊藤積分のマルチンゲール性と二つ目の式を用
いると、

E[Y 2
i (t0 + ε) | F(t0)] = E

[∫ t0+ε

0

2σiYidYi

∣∣∣∣F(t0)

]
+ E

[∫ t0+ε

0

σ2
i dt

∣∣∣∣F(t0)

]
=

∫ t0

0

2σiYidYi +

∫ t0

0

σ2
i dt+ E

[∫ t0+ε

t0

σ2
i dt

∣∣∣∣F(t0)

]
= Y 2

i (t0) + E
[
σ2
i (t0)ε+ o(ε)

∣∣F(t0)
]

= Y 2
i (t0) + σ2

i (t0)ε+ o(ε)

となる。以上より、

E[(Xi(t0 + ε)−Xi(t0))
2 | F(t0)] = E

[
Y 2
i (t0 + ε)

∣∣]− Y 2
i (t0) + o(ε)

= σ2
i (t0)ε+ o(ε)

を得る。
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(6)。計算すると、

C(ε)√
V1(ε)V2(ε)

=
ρ(t0)σ1(t0)σ2(t0)ε+ o(ε)√

σ2
1(t0)σ

2
2(t0)ε

2 + o(ε2)

=
ρ(t0)σ1(t0)σ2(t0) +

1
εo(ε)√

σ2
1(t0)σ

2
2(t0) +

1
ε2 o(ε

2)

→ ρ(t0)σ1(t0)σ2(t0)√
σ2
1(t0)σ

2
2(t0)

, (ε → 0+)

→ ρ(t0)

となる。

練習問題 4.18. (1)

(2)

(3)

解答. (1)。f(t, x) = exp
(
−θx−

(
r + 1

2θ
2
)
t
) と定めると、ζ(t) = f(t,W (t))である。また、

ft(t, x) = −
(
r +

1

2
θ2
)
f(t, x)

fx(t, x) = −θf(t, x)

fx(t, x) = θ2f(t, x)

となる。以上の結果と伊藤の公式を用いて計算すると、

dζ = ftdt+ fxdW +
1

2
fx,x(dW )2

= −
(
r +

1

2
θ2
)
f(t,W )dt− θf(t,W )dW +

1

2
θ2f(t,W )dt

= −rζdt− θζdW

となる。これは所望の結果である。
(2)。ヒント通り微分を計算する。以下では断りなく伊藤の公式や積の公式などを用いる。リスクの市場価
値 θ の定義から θσ = α− r であることに注意すると、

d(ζX) = ζdX +Xdζ + dζdX

= ζ (rXdt+ (α− r)∆Sdt+∆σSdW )

− rXζdt−XθζdW

+ (rXdt+ (α− r)∆Sdt+∆σSdW ) (−rζdt− θζdW )

= (α− r)ζ∆Sdt+∆ζσSdW −XθζdW

−∆σSθζ(dW )2

= (α− r)ζ∆Sdt+∆ζσSdW −XθζdW −∆σSθζdt

= (α− r − θσ)ζ∆Sdt+∆ζσSdW −XθζdW

= (∆ζσS −Xθζ)dW

となる。以上より、ζX は ζX =
∫ t

0
(∆ζσS −Xθζ)dW と伊藤積分を用いて表すことができ、特にこれはマル

チンゲールである。
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(3)。ζX はマルチンゲールなので、E[ζ(T )X(T )] = ζ(0)X(0) = X(0) である。X(t) は時刻 t における
ポートフォリオの価値であるから、X(0) は初期費用で X(T ) = V (T ) は時刻 T での価値である。これらか
ら、時刻 T において価値 V (T )のポートフォリオを保有したいなら、初期資金 X(0) = E[ζ(T )X(T )]ではじ
めるべきであるとわかる。

練習問題 4.19. (1)

(2)

(3)

(4)

解答. (1)。(dB(t))2 = sign2(W (t))(dW (t))2 = (dW (t))2 = dt なのでレヴィの定理より B はブラウン運動
である。
(2)。

d(B(t)W (t)) = B(t)dW (t) +W (t)dB(t) + dB(t)dW (t)

= B(t)dW (t) + sign(W (t))W (t)dW (t) + sign(W (t))(dW )2

= (B(t) + sign(W (t)))W (t)dW (t) + sign(W (t))dt

であるから、積分して期待値をとれば

E[B(t)W (t)] = E
[∫ t

0

(B(u) + sign(W (u))W (u))dW (u) +

∫ t

0

sign(W (u))du

]
= E

[∫ t

0

sign(W (u))du

]
=

∫ t

0

E [sign(W (u))] du

=

∫ t

0

(−P(W (u) < 0) + P(W (u) ≥ 0)) du

となる。ここでW (u)は平均 0分散 uの正規確率変数であるから、

P(W (u) ≤ 0) = P(W (u) < 0) =
1√
2πu

∫ 0

−∞
e−x2/2udx =

1√
2πu

∫ ∞

0

e−x2/2udx = P(W (u) ≥ 0)

となる。以上より E[B(t)W (t)] = 0である。
(3)。伊藤の公式より

d(W 2) = 2WdW + (dW )2 = 2WdW + dt

となる。
(4)。まず、B(t) はブラウン運動であるから、E[B(t)] = 0 である。従って E[B(t)]E[W 2(t)] = 0 となる。
次に d(BW 2)を計算すると、

d(BW 2) = W 2dB +Bd(W 2) + dBd(W 2)

= W 2(sign(W )dW ) +B(2WdW + dt) + sign(W )dW (2WdW + dt)

= W 2sign(W )dW + 2WBdW +Bdt) + 2W sign(W )(dW )2

= (W 2sign(W ) + 2WB)dW + (2W sign(W ) +B)dt
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となる。積分して期待値をとれば、伊藤積分の期待値が 0であることから、

E[B(t)W 2(t)] = E
[∫ t

0

(2W (u)sign(W (u)) +B(u))du

]
=

∫ t

0

E [2W (u)sign(W (u)) +B(u)] du

= 2

∫ t

0

E [W (u)sign(W (u))] du

= 2

∫ t

0

1√
2πu

∫ ∞

−∞
xsign(x)e−x2/2udxdu

= 4

∫ t

0

1√
2π

∫ ∞

0

xe−x2/2dxdu

> 0

となる。とくに E[B(t)W 2(t)] 6= E[B(t)]E[W 2(t)]となって B(t)とW (t)は独立でない (もし独立なら B(t)

とW 2(t)も独立のはずで、そうすると積の期待値は分解するはずである)。

練習問題 4.20. (1)

(2)

(3)

(4)

(5)

(6)

解答. (1)。f ′(x) = 1, (x > 0), f ′(x) = 0, (x < 0) であり、x = 0 では f ′(x) は定義されない。f ′′(x) =

0, (x 6= 0)であり、x = 0では f ′′(x)は定義されない。
(2)。f ′(W (t)) = sign(W (t))であるから、練習問題 4.19の記号を用いれば ∫ T

0
f ′(W (t))dW (t) = B(T )で

あり、これはブラウン運動である。よって式 (4.10.42)が正しければ

E[(W (T )−K)+] = E[B(T )] = 0

となるはずであるが、左辺は

E[(W (T )−K)+] =
1√
2πT

∫ ∞

−∞
(x−K)+e−x2/2T dx =

1√
2πT

∫ ∞

K

(x−K)e−x2/2T dx > 0

となるのでこれは矛盾である。
(3)。多項式の微分をするだけ。
(4)。fn(x) は連続であり、n が大きくなれば二次関数の部分の幅が小さくなるので、x 6= K に対して

limn→∞ fn(x) = (x − K)+ であることがわかる。x = K のときは fn(K) = 1/8n → 0 である。これは
所望の結果である。同じく f ′

n(x) = 0, (x < K), 1, (x > K) もわかる。x = K のときは f ′
n(K) = 1/2 →

1/2, (n → ∞)である。これも所望の結果である。
(5)。仮定から任意の tに対してW (t) < K であるから、十分大きな nを選べばW (t) < K − 1/2nとなっ
て、このとき ∫ T

0
I[K−1/2n,K+1/2n](W (t))dt = 0である。よって LK(T ) = 0がわかる。

(6)。英語版を持ってないからわからないけど、これは後の「言い換えると」の部分を (「同値であるが」と)

読めば
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「ほとんど確実に LK(T ) = 0となる、は偽であることを示せ」

という問題だと思う。そう思って解くと、伊藤積分の期待値が 0であることから

E[LK(T )] = E[(W (T )−K)+] > 0

となることが所望の結論を導く。

練習問題 4.21. (1)

(2)

解答. (1)。実際の取引を「ちょうど時刻 t」に行うことって可能なのか (取引は瞬間的に行われるものではな
いのでは)、とか、たとえば S(t)がめちゃくちゃ短時間で大量の回数 K の周りを行き来した場合とかって大
丈夫なのか？とかがちょっと現実的でないかもしれない？
(2) X(t) は伊藤積分で定義されているからマルチンゲールであり、E[X(T )] = X(0) = 0 となるが、

E[(S(T )−K)+] > 0であるから X(T ) 6= (S(T )−K)+ となる。この問題で行われている推論がダメなとこ
ろって、やっぱり (上の (1)の解答でも述べたみたいに) S(t)が K の周りを無限に行き来することがあるか
もしれない、とかそういうところにあるのかな？
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5 リスク中立価格評価法
練習問題 5.1. (1)

(2)

解答. (1)。式 (5.2.16)と式 (5.2.17)をかけあわせると DS = f(X)となることがわかる。X の定義から、

dX = σdW +

(
α−R− 1

2
σ2

)
ds

であるから、(dX)2 = σ2(dW )2 = σ2dtとなる。よって伊藤の公式より

d(f(X)) = f ′(X)dX +
1

2
f ′′(X)(dX)2

= f(X)dX +
1

2
f(X)σ2dt

= f(X)

(
dX +

1

2
σ2ds

)
= DS

(
σdW +

(
α−R− 1

2
σ2

)
ds+

1

2
σ2ds

)
= DS (σdW + (α−R) ds)

= σDS

(
dW +

α−R

σ
ds

)
= σDS (dW +Θds)

となる。ただし Θ = (α − R)/σ はリスクの市場価格である。d(f(X)) = d(DS) であるから、これは式
(5.2.20)と一致している。
(2)。

d(DS) = SdD +DdS + dDdS

= S(−RDdt) +D(αSdt+ σSdW ) + (−RDdt)(αSdt+ σSdW )

= S (−RDdt+Dαdt+DσdW ))

= σDS

(
α−R

σ
dt+ dW )

)
= σDS (Θdt+ dW ))

であり、これは式 (5.2.20)と一致している。

練習問題 5.2.

解答. 式 (5.2.30)、つまり
D(t)V (t) = Ẽ[D(T )V (T ) | F(t)]

の右辺に補題 (5.2.2)を用いれば

= E[D(T )V (T )Z(T ) | F(t)]/Z(t)

となって、両辺を Z(t)倍すれば所望の等式を得る。
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練習問題 5.3. (1)

(2)

(3)

解答. (1)。

f(x) = S(T ) = x exp

(
σW̃ (T ) +

(
r − 1

2
σ2

)
T

)
= K exp

(
σ
√
Td−(T, x) + σW̃ (T )

)
とおけば、式 (5.9.2)より c(0, x) = Ẽ

[
e−rTh(f(x))

] である。xで微分すれば、

f ′(x) = f(1) , h′(x) =

{
0, (x < K),

1, (x > K),

であることから

cx(0, x) = Ẽ
[(
e−rTh(f(x))

)′]
= Ẽ

[
e−rT f ′(x)h′(f(x))

]
= e−rT Ẽ

[
exp

(
σW̃ (T ) +

(
r − 1

2
σ2

)
T

)
h′(f(x))

]
= e−

1
2σ

2T Ẽ
[
eσW̃ (T )h′(f(x))

]
= e−

1
2σ

2T Ẽ
[
eσW̃ (T )If(x)>K

]

となる。ここで

f(x) > K

⇐⇒ K exp
(
σ
√
Td−(T, x) + σW̃ (T )

)
> K

⇐⇒ eσW̃ (T ) > e−σ
√
Td−(T,x)

⇐⇒ σW̃ (T ) > −σ
√
Td−(T, x)

⇐⇒ W̃ (T ) > −
√
Td−(T, x) (ボラティリティ σ は今の仮定では正である)

であることに注意すると、

cx(0, x) = e−
1
2σ

2T Ẽ
[
eσW̃ (T )If(x)>K

]
= e−

1
2σ

2T Ẽ
[
eσW̃ (T )IW̃ (T )>−

√
Td−(T,x)

]
となる。また、W̃ はリスク中立測度 P̃のもとでのブラウン運動であるから、とくに W̃ (T )は平均 0で分散 T

の (P̃に関する) 正規確率測度である。従って

e−
1
2σ

2T Ẽ
[
eσW̃ (T )IW̃ (T )>−

√
Td−(T,x)

]
=

1√
2πT

e−σ2T/2

∫ ∞

−
√
Td−(T,x)

eσte−t2/2T dt

=
1√
2πT

e−σ2T/2

∫ ∞

−
√
Td−(T,x)

e−(t−σT )2/2T+σ2T/2dt

=
1√
2πT

∫ ∞

−
√
Td−(T,x)

e−(t−σT )2/2T dt
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=
1√
2πT

∫ ∞

−
√
Td−(T,x)−σT

e−t2/2T dt

=
1√
2π

∫ ∞

−d−(T,x)−σ
√
T

e−t2/2dt

= N(d−(T, x) + σ
√
T ) = N(d+(T, x))

となる。これは所望の結果である。
(2)。Ŵ (t) がブラウン運動となり、また cx(0, x) = P̂(S(T ) > K) となるように P̂ を定める問題と解釈す
る。W̃ (T )は平均 0で分散 T の正規確率変数であるから、ギルザノフの定理を用いると、

Z(t) :
def
= exp

(
σW̃ (t)− 1

2
σ2t

)
とおいて確率測度 P̂を

P̂(A) :
def
=

∫
A

Z(ω)P̃(ω)

と定義すれば、Ŵ (t) = W̃ (t)− σt は確率測度 P̂のもとブラウン運動となる。また、(1)の解答の記号のもと、
e−rT f ′(x) = f(1) = Z(T )であるから、

P̂(S(T ) > K) = Ê
[
IS(T )>K

]
= Ẽ

[
IS(T )>KZ(T )

]
= Ẽ

[
e−rT f ′(x)h′(f(x))

]
= Ẽ

[(
e−rTh(f(x))

)′]
= cx(0, x)

となって、cx(0, x) = P̂(S(T ) > K)も確認できた。
(3)。S(T )を Ŵ (T )を用いて表すと、

S(T ) = x exp

(
σW̃ (T ) +

(
r − 1

2
σ2

)
T

)
= x exp

(
σ
(
Ŵ (T ) + σT

)
+

(
r − 1

2
σ2

)
T

)
= x exp

(
σŴ (T ) +

(
r +

1

2
σ2

)
T

)
= K exp

(
σ
√
Td+(T, x) + σŴ (T )

)
となる。このとき、

S(T ) > K

⇐⇒ K exp
(
σ
√
Td+(T, x) + σŴ (T )

)
> K

⇐⇒ exp
(
σ
√
Td+(T, x) + σŴ (T )

)
> 1

⇐⇒ σŴ (T ) > −σ
√
Td+(T, x)

⇐⇒ Ŵ (T ) > −
√
Td+(T, x)

⇐⇒ − Ŵ (T )
T < d+(T, x)
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であるから、

P̂(S(T ) > K) = P̂

(
−Ŵ (T )

T
< d+(T, x)

)
= P̂

(
Ŵ (T ) > −

√
Td+(T, x)

)
=

1√
2πT

∫ ∞

−
√
Td+(T,x)

e−x2/2T dx

=
1√
2π

∫ ∞

−d+(T,x)

e−x2/2dx

= N(d+(T, x))

がわかる。

練習問題 5.4. (1)

(2)

解答. (1)。Sd(log(S)) = dS であるから、

d(logS) =
1

S
dS − 1

2S2
(dS)2

=
1

S

(
rSdt+ σSdW̃

)
− 1

2S2

(
rSdt+ σSdW̃

)2
= rdt+ σdW̃ − σ2

2
(dW̃ )2

= rdt+ σdW̃ − σ2

2
dt

=

(
r − σ2

2

)
dt+ σdW̃

となる。これを積分すれば

logS(T )− logS(0) =

∫ T

0

(
r(t)− σ2(t)

2

)
dt+

∫ T

0

σ(t)dW̃ (t)

となるので、右辺の確率変数を X とおけば S(T ) = S(0)eX となる。また、右辺第 1項は r, σ は確定的であ
るから定数であり、第 2項は確定的な関数の伊藤積分であるから (リスク中立測度 P̃に対して) (定理 4.4.9よ
り) 期待値 0で分散 ∫ T

0
σ2(t)dtの正規確率変数である。従って X は正規確率変数となる。リスク中立測度で

X の期待値をとれば、伊藤積分の部分は 0になって

Ẽ[X] = Ẽ

[∫ T

0

(
r(t)− 1

2
σ2(t)

)
dt

]

である。ここで r(t)は確定的であるから、Ẽ[X] =
∫ T

0
(r(t)− σ2(t)/2)dtがわかる。分散も同じく、r が確定
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的であることから、

Var(X) = Ẽ[X2 − Ẽ[X]2]

=

(∫ T

0

(r(t)− σ2(t)/2)dt

)2

−

(∫ T

0

(r(t)− σ2(t)/2)dt

)2

+ Ẽ

(∫ T

0

σ(t)dW̃ (t)

)2


= Ẽ

(∫ T

0

σ(t)dW̃ (t)

)2


となる。ここで伊藤積分の等長性と σ が確定的であることから、

= Ẽ

[∫ T

0

σ2(t)dt

]
=

∫ T

0

σ2(t)dt

がわかる。実測度では、dW̃ = dW +Θdtであるから、Θが確定的であることからX は正規確率変数であり、
期待値は E[X] =

∫ T

0
(r(t)− σ2(t)/2 + σ(t)Θ(t))dtである。同じく分散は Var(X) =

∫ T

0
σ2(t)dtである。

(2)。S̄(t)を原資産であるボラティリティが一定値 Σで金利 R も一定となるヨーロピアン・コールに対す
る確率変数とすると、

dS̄ = RS̄dt+ΣS̄dW

であるから、(1)より、
S̄(T ) = S̄(0)eX̄

となる (リスク中立測度に関する) 平均 (R − Σ2/2)T で分散 TΣ2 の正規確率変数 X̄ が存在する。ここで
X = X̄ として定数 R,Σを r, σ で表すと、

R =
1

T

∫ T

0

r(t)dt,

Σ =

√
1

T

∫ T

0

σ2(t)dt,

となる。このとき D(T ) = exp
(
−
∫ T

0
r(t)dt

)
= e−RT であり、従って、

c(0, S(0)) = E
[
D(T ) (S(T )−K)

+
]

= E
[
e−RT

(
S̄(T )−K

)+]
となるが、ここで最後の期待値は、原資産であるボラティリティが一定値 Σで金利 Rも一定となるヨーロピ
アン・コールの時刻 0での価格、つまり BSM(T, S(0);K,R,Σ)に他ならない。以上で示された。

練習問題 5.5. (1)

(2)

(3)

(4)
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解答. (1)。Z = eX とおくと dX = −ΘdW − 1
2Θ

2duであるから、

dZ = eXdX +
1

2
eX(dX)2

= Z

(
−ΘdW − 1

2
Θ2du

)
+

1

2
Z

(
−ΘdW − 1

2
Θ2du

)2

= −ZΘdW − 1

2
ZΘ2du+

1

2
ZΘ2(dW )2

= −ZΘdW − 1

2
ZΘ2du+

1

2
ZΘ2du

= −ZΘdW

となる。従って

d

(
1

Z

)
= −Z−2dZ +

1

2
· 2Z−3(dZ)2

= Z−2ZΘdW +
1

2
· 2Z−3Z2Θ2(dW )2

= Z−1ΘdW + Z−1Θ2dt

=
Θ

Z
(Θdt+ dW )

となる。
(2)。0 ≤ s ≤ tとする。M̃(t)は F(t)-可測であるから、補題 5.2.2より

E[Z(t)M̃(t) | F(s)] = Z(s)Ẽ[M̃(t) | F(s)]

= Z(s)M̃(s)

となって ZM̃ は Pのもとでマルチンゲールである。
(3)。仮定から dM = ΓdW である。よって

dM̃ =
1

Z
dM +Md

(
1

Z

)
+ dMd

(
1

Z

)
=

1

Z
ΓdW +M

Θ

Z
(Θdt+ dW ) + Γ

Θ

Z
dW (Θdt+ dW )

=
1

Z

(
ΓdW +MΘ(Θdt+ dW ) + ΓΘ(dW )2

)
=

1

Z
(ΓdW +MΘ(Θdt+ dW ) + ΓΘdt)

=
1

Z
(Γ +MΘ) dW +

Θ

Z
(MΘ+ Γ) dt

=
MΘ+ Γ

Z
(dW +Θdt)

となる。
(4)。dW̃ = dW +Θdtとなるから Γ̃ :

def
= (MΘ+Γ)/Z とおけば dM̃ = Γ̃dW̃ である。これを積分すれば式

(5.3.2)を得る。

練習問題 5.6.
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解答. まず Z について調べる。Z = eX とおけば

dX = −
∑

ΘidWi −
1

2
‖Θ‖2du

である。dWidWj = 0, (i 6= j), du, (i = j) と dWidu = (du)2 = 0より、

dZ = ZdX +
1

2
Z(dX)2

= −Z

(∑
ΘidWi +

1

2
‖Θ‖2du

)
+

Z

2

(∑
ΘidW − 1

2
‖Θ‖2du

)2

= −Z

(∑
ΘidWi +

1

2
‖Θ‖2du

)
+

Z

2

∑
Θ2

i (dWi)
2

= −Z

(∑
ΘidWi +

1

2
‖Θ‖2du

)
+

Z

2
‖Θ‖2du

= −Z
∑

ΘidWi

となる。とくに Z は P についてマルチンゲールであり、E[Z(T )] = Z(0) = 1 がわかる。また dZdu =

0, dZdWi = −ZΘiduもわかる。dW̃i = dWi +Θiduであるから、

d(ZW̃i) = W̃idZ + ZdW̃i + dW̃idZ

= W̃idZ + Z(dWi +Θidu) + (dWi +Θidu)dZ

= W̃idZ + Z(dWi +Θidu) +−ZΘidu

= W̃idZ + ZdWi

となって、dZ = −Z
∑

ΘidWi より ZW̃i も Pについてマルチンゲールである。従って

Ẽ[W̃i(t) | F(s)] =
1

Z(s)
E[W̃i(t)Z(t) | F(s)] =

1

Z(s)
W̃i(s)Z(s) = W̃i(s)

となって W̃i(s)は P̃についてマルチンゲールである。
また、

dW̃idW̃j = (dWi +Θidu)(dWj +Θjdu) = dWidWj = δijdu

である (ここで δij はクロネッカーのデルタ) から、レヴィの定理により dW̃i たちは互い独立なブラウン運動
である。以上で示された。

練習問題 5.7. (1)

(2)

解答. (1)。X2(0) = a > 0 とおく。X2(t) :
def
= (a + X1(t))/D(t) とすれば X2(t)D(t) = a + X1(t) である

から、

X1(T ) ≥ 0 ⇐⇒ X1(T ) + a ≥ a ⇐⇒ X2(T )D(T ) ≥ X2(0) ⇐⇒ X2(T ) ≥ X2(0)/D(T )

となって P(X2(T ) ≥ X2(0)/D(T )) = P(X1(T ) ≥ 0) = 1となる。同じく

X1(T ) > 0 ⇐⇒ X2(T ) > X2(0)/D(T )

なので P(X2 > X2(0)) = P(X1 > 0) > 0 となる。以上より X2 は所望の確率過程である。
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(2)。X2(0) = a > 0 とおく。X1(t) :
def
= D(t)X2(t) − a とおけば、D(0) = 1 であるから X1(0) =

D(0)X2(0)− a = a− a = 0であり、また (1)の証明と同じく

P(X1 ≥ 0) = P(X2 ≥ X2(0)) = 0,

P(X1 > 0) = P(X2 > X2(0)) > 0,

となる。以上より X1 は所望の確率過程である。

練習問題 5.8. (1)

(2)

(3)

解答. (1)。D = e−X の形をしていて dX = Rdt であるので、dD = −e−XdX = −DRdt となる。さらに
dV は dtと dW のある適合過程を係数とした線形和であるから、dDdV = 0がわかる。よって伊藤の積の公
式より

d(DV ) = DdV + V dD = DdV − V DRdt = D(dV − V Rdt)

となる。ここで DV がマルチンゲールであることから、マルチンゲールの表現定理よりある適合過程 Γ̃ が
あって d(DV ) = Γ̃dW̃ となる。代入すると、

Γ̃dW̃ = D(dV − V Rdt)

となり、これを整理すれば所望の式を得る。
(2)。ほとんど確実に正な確率変数の条件付き期待値はほとんど確実に正であるが、ここでD(T )V (T )/D(t)

はほとんど確実に正であるから、V (t) = E[D(T )V (T )/D(t) | F(t)]もほとんど確実に正である。
(3)。σ = Γ̃/DV とおくと良い。

練習問題 5.9.

解答. cK の式を見れば cK が正しければ cK,K が本の通りとなることは明らかである。よって本書の cK の式
が正しいことを確かめれば十分である。計算すると、

cK(0, T, x,K) =
d

dK
e−rT

∫ ∞

K

(y −K)p̃(0, T, x, y)dy

=
d

dK
e−rT

∫ ∞

K

yp̃(0, T, x, y)dy − d

dK

(
Ke−rT

∫ ∞

K

yp̃(0, T, x, y)dy

)
= −e−rTKp̃(0, T, x,K)− e−rT

∫ ∞

K

yp̃(0, T, x, y) +Ke−rT p̃(0, T, x,K)

= −e−rT

∫ ∞

K

yp̃(0, T, x, y)

となる。以上で確認できた。

練習問題 5.10. (1)

(2)

解答. (1)。オプションの買い手がコールとプットのどちらを選んでも良いようにするには t0 の時点でのオプ
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ションの価格は max {C(t0), P (t0)} でなければならない。式変形すれば
max {C(t0), P (t0)} = C(t0) + max {0, P (t0)− C(t0)}

= C(t0) + max {0,−F (t0)}

= C(t0) +
(
e−r(T−t0)K − S(t0)

)+
となって所望の等式を得る。
(2)。V (T ) をこのオプションのペイオフとすると、時刻 t でのオプション価格は、リスク中立価格評価式
から V (t) = Ẽ[e−r(T−t)V (T )] である。行使価格 K のコール・オプション、プット・オプションの価格を
CK(t), PK(t)と表せば、初期値は

V (0) = Ẽ[e−r(T−t)V (T )]

= Ẽ
[
Ẽ
[
e−r(T−t)V (T ) | F(t0)

]]
= Ẽ [V (t0)]

= Ẽ [CK(t0)] + Ẽ
[(

e−r(T−t0)K − S(t0)
)+]

= CK(0) + Pe−r(T−t0)K(0)

となる。これは所望の結果である。

練習問題 5.11.

解答. まず d(DX) を計算する。dD = −RDdu であることに注意。従って dDdX = 0 である。また
Θ = (α−R)/σ を用いて dW̃ = dW +Θduと定義する。W̃ はリスク中立測度のもとブラウン運動である。

d(DX) = DdX +XdD

= D (∆dS +R(X −∆S)du− Cdu)−XRDdu

= D∆dS −∆Sdu− CDdu

= D∆(αSdu+ σSdW )−R∆Sdu− CDdu

= D∆σSdW +D∆αSdu−R∆Sdu− CDdu

= D∆σSdW +DS∆(α−R)du− CDdu

= D∆σS(dW̃ −Θdu) +DS∆(α−R)du− CDdu

= D∆σSdW̃ −D∆SσΘdu+DS∆(α−R)du− CDdu

= D∆σSdW̃ − CDdu

となる。∫ T

0
で積分してリスク中立測度で条件つき期待値 Ẽ[(−)|F(t)]をとる。伊藤積分はマルチンゲールで

あるから、

D(T )X(T )−D(0)X(0) =

∫ t

0

∆(u)σ(u)D(u)S(u)dW̃ (u)− E

[∫ T

0

C(u)D(u)du

∣∣∣∣∣F(t)

]

=

∫ t

0

∆(u)σ(u)D(u)S(u)dW̃ (u)− M̃(t)

となる。定義から M̃(t)はマルチンゲールなので、マルチンゲールの表現定理から dM̃ = Γ̃dW̃ となる Γ̃が
存在する。従って、

M̃(t)− M̃(0) =

∫ t

0

Γ̃(u)dW̃ (u)
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であり、代入すれば∫ t

0

(
∆(u)σ(u)D(u)S(u)− Γ̃(u)

)
dW̃ (u) + M̃(0) = D(T )X(T )−D(0)X(0)

がわかる。この等式から、∆ :
def
= Γ̃/σDS と定めると、確定値 X(0) = M̃(0)/D(0)に対してほとんど確実に

X(T ) = 0となることがわかる。

練習問題 5.12. (1)

(2)

(3)

(4)

(5)

解答. (1)と (3)。まず dBi =
∑d

j=1 σij/σidWj と dW̃j = dWj +Θjduであることから、

dB̃i = dBi + γidu =

d∑
j=1

σij

σi
dWj +

d∑
j=1

σijΘj

σi
du =

d∑
j=1

σij

σi
(dWj +Θjdu) =

d∑
j=1

σij

σi
dW̃j

となる。従って B̃i はマルチンゲールである。また、

dB̃idB̃j =

d∑
k1=1

d∑
k2=1

σik1
σjk2

σiσj
dW̃k1dW̃k2 =

d∑
k=1

σikσjk

σiσj
(dW̃k)

2 = ρijdu

となる。とくに i = j のときは ρij = 1であるから、各 iについて B̃i はブラウン運動となる。
(2)。dB̃i = dBi + γidtであるから、

RSi + σiSiγi = αiSi

を示せば十分である。γi =
∑

j σijΘj/σi であることから、

Si

∑
j

σijΘj = (αi −R)Si

つまり ∑
j

σijΘj = αi −R

を示せば十分であるが、これはリスク市場価格方程式そのものであり、Θj はこれを満たすようにとっている。
(4)。

d(BiBk) = BidBk +BkdBi + dBidBk = BidBk +BkdBi + ρikdu

を ∫ t

0
で積分して確率測度 Pで期待値をとると、dBi は dWi の線形和であるから、特に BidBk +BkdBi の積

分の部分は期待値が 0となり、また ρが確定的であることから、

E[Bi(t)Bk(t)] =

∫ t

0

ρikdu

となる。チルダをつけて同様のことを行えば Ẽ[B̃i(t)B̃k(t)] =
∫ t

0
ρikdu もわかる。Bi(t), B̃i(t) はそれぞれ

P, P̃についてブラウン運動であるから、それぞれの測度に対して分散 tであり、以上で相関が 1
t

∫ t

0
ρikdu で

あることもわかる。
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(5)。

E [B1(t)B2(t)] = E
[∫ t

0

ρ12(u)du

]
=

∫ t

0

E [sign (W1(u))] du

=

∫ t

0

(P(W1(u) ≥ 0)− P(W1(u) < 0)) du

= 0

Ẽ
[
B̃1(t)B̃2(t)

]
= Ẽ

[∫ t

0

ρ12(u)du

]
=

∫ t

0

Ẽ [sign (W1(u))] du

=

∫ t

0

(
P̃(W1(u) ≥ 0)− P̃(W1(u) < 0)

)
du

=

∫ t

0

(
P̃(W̃1(u) ≥ u)− P̃(W̃1(u) < u)

)
du

= −
∫ t

0

1√
2πu

∫ u

−u

e−s2/2udsdu

> 0

である。

練習問題 5.13. (1)

(2)

解答. (1)。W̃1 = W1 であるから ẼW1(t) = 0なのは良い。これを用いれば

ẼW2(t) = ẼW̃2(t)−
∫ t

0

ẼW1(u)du = 0− 0 = 0

となる。
(2)。dW2 = dW̃2 −W1duに注意すると、

d(W1W2) = W1dW2 +W2dW1 = W1(dW̃2 −W1du) +W2dW̃1 = W1dW̃2 +W2dW̃1 −W 2
1 du

となる。これを ∫ T

0
で積分して Ẽで期待値を取れば、伊藤積分の部分は消えるので、

Ẽ[W1(T )W2(T )] = Ẽ

[
−
∫ T

0

W 2
1 (u)du

]
= −

∫ T

0

Ẽ
[
W 2

1 (u)
]
du = −

∫ T

0

udu = −1

2
T 2

となる。

練習問題 5.14. (1)

(2)

(3)

(4)

(5)
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(6)

解答. (1)。

d(e−rtX) = e−rtdX − rXe−rtdt

= −rXe−rtdt+ e−rt (∆dS − a∆dt+ r(X −∆S)dt)

= e−rt
(
∆
(
rSdt+ σSdW̃ + at

)
− a∆dt− r∆Sdt

)
= e−rt∆σSdW̃

となるので e−rtX はマルチンゲールである。
(2)。指数の中身を Y ′ として Y = eY

′ とおく。dY ′ = σdW̃ +
(
r − 1

2σ
2
)
dt であるから、(dY ′)2 = σ2dt

であり、

dY = eY
′
dY ′ +

1

2
eY

′
(dY ′)2

= Y σdW̃ + Y

(
r − 1

2
σ2

)
dt+

1

2
Y σ2dt

= rY dt+ σY dW̃

となる。これは所望の結果である。また、e−rt を割り引くと、

d(e−rtY ) = e−rtdY − re−rtY dt

= e−rt
(
rY dt+ σY dW̃

)
− re−rtY dt

= e−rtσY dW̃

となって e−rtY はマルチンゲールである。最後に式 (5.9.8)で定められた S が式 (5.9.7)を満たすことを確認
する。Y > 0であるから、Y で割れば、

d

(
S

Y

)
=

a

Y
dt

となる。とくに Y d
(
S
Y

)
= adtである。左辺を計算するために、まず d

(
1
Y

)を計算すると、(dY 2) = σ2Y 2dt

であるから、

d

(
1

Y

)
=

−1

Y 2
dY +

1

2
2
1

Y 3
(dY )2

=
−1

Y

(
rdt+ σdW̃

)
+

σ2

Y
dt

となる。とくに
Y d

(
1

Y

)
= (−r + σ2)dt− σdW̃

である。従って、

Y d

(
S

Y

)
= SY d

(
1

Y

)
+ dS + Y d

(
1

Y

)
dS

= S
(
(−r + σ2)dt− σdW̃

)
+ dS +

(
(−r + σ2)dt− σdW̃

)
dS

= S
(
(−r + σ2)dt− σdW̃

)
+ dS − σdW̃dS
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となる。よって
adt = S

(
(−r + σ2)dt− σdW̃

)
+ dS − σdW̃dS

となる。dW̃dS を計算するために、この等式の両辺に dW̃ をかけると、

0 = −σS(dW̃ )2 + dW̃dS = −σSdt+ dW̃dS

となるので、dW̃dS = σSdtがわかる。これを代入して、

adt = S
(
(−r + σ2)dt− σdW̃

)
+ dS − σ2Sdt = −rSdt− σSdW̃ + dS

となるので、整理すれば
dS = rSdt+ σSdW̃ + adt

となり、所望の等式を得る。
(3)。式 (5.9.9) は式 (5.9.8) を ∫ T

0
=
∫ t

0
+
∫ T

t
で積分することで得られるものである。式 (5.9.9) を整理す

る。e−rtY (t)は P̃についてマルチンゲールなので Ẽ
[
e−rTY (T )

∣∣F(t)
]
= e−rtY (t) であり、従って

Ẽ[Y (T ) | F(t)] = er(T−t)Y (t)

となる。また、t ≤ s ≤ T について Y (T )/Y (s)を計算すると、

Y (T )

Y (s)
= exp

(
σ(W̃ (T )− W̃ (s)) +

(
r − 1

2
σ2

)
(T − s)

)
であるが、ここで W̃ は P̃に関してブラウン運動であるため、t ≤ s ≤ T であることから、W̃ (T )− W̃ (s)は
F(t)と独立である。とくに Y (T )/Y (s)も F(t)と独立であることがわかり、

Ẽ
[
Y (T )

Y (s)

∣∣∣∣F(t)

]
= Ẽ

[
Y (T )

Y (s)

]
= e(r−

1
2σ

2)(T−s)Ẽ
[
eσ(W̃ (T )−W̃ (s))

]
= e(r−

1
2σ

2)(T−s) 1√
2π(T − s)

∫ ∞

−∞
eσxe−x2/2(T−s)dx

= e(r−
1
2σ

2)(T−s)+ 1
2σ

2(T−s) 1√
2π(T − s)

∫ ∞

−∞
e−(x−σ(T−s))2/2(T−s)dx

= er(T−s) 1√
2π

∫ ∞

−∞
e−x2/2dx

= er(T−s)

となることがわかる。以上より、

Ẽ [S(T )|F(t)] = S(0)Ẽ [Y (T )|F(t)] + Ẽ [Y (T )|F(t)]

∫ t

0

a

Y (s)
ds+ a

∫ T

t

Ẽ
[
Y (T )

Y (s)

∣∣∣∣F(t)

]
ds

= S(0)er(T−t)Y (t) + er(T−t)Y (t)

∫ t

0

a

Y (s)
ds+ a

∫ T

t

er(T−s)ds

= er(T−t)S(t) +
a

r
(er(T−t) − 1)

となる。
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(4)。dS = rSdt+ σSdW̃ + adtであるから、

d
(
Ẽ [S(T )|F(t)]

)
= d

(
er(T−t)S +

a

r
(er(T−t) − 1)

)
= −rer(T−t)Sdt+ er(T−t)dS − aer(T−t)dt

= −rer(T−t)Sdt+ er(T−t)(rSdt+ σSdW̃ + adt)− aer(T−t)dt

= σSer(T−t)dW̃

となって Ẽ [S(T )|F(t)] はマルチンゲールであることがわかる。
(5)。FutS(t, T ) = Ẽ [S(T )|F(t)] なので、

Ẽ
[
e−r(T−t) (S(T )−K)

∣∣∣F(t)
]
= e−r(T−t)

(
Ẽ [S(T )|F(t)]−K

)
= e−r(T−t) (FutS(t, T )−K)

であるが、ここでK = ForS(t, T )とすると、

Ẽ
[
e−r(T−t) (S(T )−K)

∣∣∣F(t)
]
= 0

より
FutS(t, T ) = K = ForS(t, T )

を得る。
(6)。 {

dX = dS − adt+ r(X − S)dt,

X(0) = 0,

を解く。d(e−rtS) = e−rtdS − re−rtSdtに注意すると、
d(e−rtX) = e−rtdX − re−rtXdt

= e−rt (dS − adt+ r(X − S)dt)− re−rtXdt

= e−rt (dS − adt− rSdt)

= d(e−rtS)− ae−rtdt

となる。これを ∫ T

0
で積分すると、

e−rTX(T ) = e−rTS(T )− S(0)− a

r
(1− e−rT )

となる。従って
X(T ) = S(T )− erT

(
S(0) +

a

r
(1− e−rT )

)
となる。次に ForS(0, T )を求める。(5)より ForS(t, T ) = FutS(t, T )なので、(3)より

ForS(t, T ) = FutS(t, T )

= Ẽ[S(T ) | F(t)]

= er(T−t)S(t) +
a

r
(er(T−t) − 1)

となる。とくに
ForS(0, T ) = erT

(
S(0) +

a

r
(1− e−rT )

)
となる。以上より X(T ) = S(T )− ForS(0, T )となる。
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6 偏微分方程式との関係
練習問題 6.1. (1)

(2)

解答. (1)。u = t とすれば ∫ u

t
=
∫ t

t
= 0 であるから Z(t) = e0 = 1 である。Z = eZ

′ となる Z ′ をとれば、
d(Z ′) = σdW +

(
b− 1

2σ
2
)
du であるから、

dZ = d(eZ
′
)

= eZ
′
d(Z ′) +

1

2
eZ

′
(d(Z ′))2

= Z

(
σdW +

(
b− 1

2
σ2

)
du

)
+

1

2
Z

(
σdW +

(
b− 1

2
σ2

)
du

)2

= σZdW +

(
b− 1

2
σ2

)
Zdu+

1

2
Zσ2(dW )2

= σZdW +

(
b− 1

2
σ2

)
Zdu+

1

2
Zσ2du

= σZdW + bZdu

となる。これは所望の等式である。
(2)。X = Y Z とおけば

dX = Y dZ + ZdY + dY dZ

= Y (σZdW + bZdu) + Z

(
a− σγ

Z
du+

γ

Z
dW

)
+

(
a− σγ

Z
du+

γ

Z
dW

)
(σZdW + bZdu)

= σY ZdW + bY Zdu+ (a− σγ) du+ γdW + ((a− σγ) du+ γdW ) (σdW + bdu)

= σXdW + bXdu+ (a− σγ) du+ γdW + γσ(dW )2

= (γ + σX)dW + (a+ bX)du

となって所望の等式を得る。

練習問題 6.2. (1)

(2)

(3)

解答. (1)。債券の価格は f(t, R(t), T )であるから、このポートフォリオ X(t)の満たす方程式は

dX(t) = ∆1(t)df(t, R(t), T1) + ∆2(t)df(t, R(t), T2)

+R(t) (X(t)−∆1(t)f(t, R(t), T1)−∆2(t)f(t, R(t), T2)) dt

である。df(t, R(t), T )を計算すれば、(dR(t))
2
= γ2(t, R(t))dtであるから、

df(t, R(t), T ) = ft(t, R(t), T )dt+ fr(t, R(t), T )dR(t) +
1

2
fr,r(t, R(t), T ) (dR(t))

2

= ft(t, R(t), T )dt+ fr(t, R(t), T ) (α(t, R(t))dt+ γ(t, R(t))dW (t))

+
1

2
fr,r(t, R(t), T )γ2(t, R(t))dt
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=

(
ft(t, R(t), T ) +

1

2
γ2(t, R(t))fr,r(t, R(t), T )

)
dt

+ α(t, R(t))fr(t, R(t), T )dt+ γ(t, R(t))fr(t, R(t), T )dW (t)

= (R(t)f(t, R(t), T )− β(t, R(t), T )) dt

+ α(t, R(t))fr(t, R(t), T )dt+ γ(t, R(t))fr(t, R(t), T )dW (t)

= (R(t)f(t, R(t), T ) + (α(t, R(t))− β(t, R(t), T )) fr(t, R(t), T )) dt

+ γ(t, R(t))fr(t, R(t), T )dW (t)

となる。とくに

∆1(t)df(t, R(t), T1) + ∆2(t)df(t, R(t), T2)

= ∆1(t) (R(t)f(t, R(t), T1) + (α(t, R(t))− β(t, R(t), T1)) fr(t, R(t), T1)) dt

+∆1(t)γ(t, R(t))fr(t, R(t), T1)dW (t)

+ ∆2(t) (R(t)f(t, R(t), T2) + (α(t, R(t))− β(t, R(t), T2)) fr(t, R(t), T2)) dt

+∆2(t)γ(t, R(t))fr(t, R(t), T2)dW (t)

= R(t)f(t, R(t), T1) (∆1(t) + ∆2(t)) dt

+∆1(t) (α(t, R(t))− β(t, R(t), T1)) fr(t, R(t), T1)dt

+∆2(t) (α(t, R(t))− β(t, R(t), T2)) fr(t, R(t), T2)dt

+ γ(t, R(t)) (∆1(t)fr(t, R(t), T1) + ∆2(t)fr(t, R(t), T2)) dW (t)

となる。割引過程 D(t) = e−
∫ t
0
R(u)du の微分は、dD = −DRdtであるから、

d(DX) = DdX +XdD = DdX −RDXdt = D(dX −RXdt)

となる。ここで X の満たす方程式から、

dX(t)−R(t)X(t)dt = ∆1(t)df(t, R(t), T1) + ∆2(t)df(t, R(t), T2)

−R(t)f(t, R(t), T2) (∆1(t) + ∆2(t)) dt

となるので、結局

d(D(t)X(t)) = D(t)(dX(t)−R(t)X(t)dt)

= D(t) (∆1(t)df(t, R(t), T1) + ∆2(t)df(t, R(t), T2))

−R(t)D(t)f(t, R(t), T2) (∆1(t) + ∆2(t)) dt

= ∆1(t)D(t) (α(t, R(t))− β(t, R(t), T1)) fr(t, R(t), T1)dt

+∆2(t)D(t) (α(t, R(t))− β(t, R(t), T2)) fr(t, R(t), T2)dt

+D(t)γ(t, R(t)) (∆1(t)fr(t, R(t), T1) + ∆2(t)fr(t, R(t), T2)) dW (t)

となる。これは所望の等式である。
(2)。∆1(t) = S(t)fr(t, R(t), T2),∆2(t) = −S(t)fr(t, R(t), T1) を代入すれば、

∆1(t)fr(t, R(t), T1) + ∆2(t)fr(t, R(t), T2) = 0
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であるから、

d(D(t)X(t)) = ∆1(t)D(t) (α(t, R(t))− β(t, R(t), T1)) fr(t, R(t), T1)dt

+∆2(t)D(t) (α(t, R(t))− β(t, R(t), T2)) fr(t, R(t), T2)dt

+D(t)γ(t, R(t)) (∆1(t)fr(t, R(t), T1) + ∆2(t)fr(t, R(t), T2)) dW (t)

= S(t)D(t) (α(t, R(t))− β(t, R(t), T1)) fr(t, R(t), T1)fr(t, R(t), T2)dt

− S(t)D(t) (α(t, R(t))− β(t, R(t), T2)) fr(t, R(t), T1)fr(t, R(t), T2)dt

= S(t)D(t) (β(t, R(t), T2)− β(t, R(t), T1)) fr(t, R(t), T1)fr(t, R(t), T2)dt

= D(t) |(β(t, R(t), T2)− β(t, R(t), T1)) fr(t, R(t), T1)fr(t, R(t), T2)| dt

となる。絶対値の中身を Y (t) ≥ 0とおけば、D(0) = 1であるから、積分することで

D(t)X(t)−X(0) =

∫ t

0

D(u)Y (u)du ≥ 0

を得る。これは P(X(t) ≥ X(0)/D(t)) = 1を示している。また、もしある tで β(t, R(t), T1) 6= β(t, R(t), T2)

となれば Y (t) > 0となるのでD(T )X(T ) > X(0)となり、このことは裁定機会を生じさせることを意味する
(練習問題 5.7 (2))。従ってすべての tで β(t, R(t), T1) = β(t, R(t), T2) となることがわかる。
(3)。問題文がよくわからないが、保有債券数が ∆(t) のポートフォリオ X(t) を考えているはず。つまり

X(t)は次を満たす：

dX(t) = ∆(t)df(t, R(t), T ) +R(t) (X(t)−∆(t)f(t, R(t), T )) dt.

(2)で得たいろいろな計算結果をそのまま用いる。

df(t, R(t), T ) = (R(t)f(t, R(t), T ) + (α(t, R(t))− β(t, R(t), T )) fr(t, R(t), T )) dt

+ γ(t, R(t))fr(t, R(t), T )dW (t)

であるから、

dX(t)−R(t)X(t)dt

= ∆(t) (df(t, R(t), T )−R(t)f(t, R(t), T )) dt

= ∆(t) ((α(t, R(t))− β(t, R(t), T )) fr(t, R(t), T )dt+ γ(t, R(t))fr(t, R(t), T )dW (t))

となるので、

d(D(t)X(t))

= D(t)(dX(t)−R(t)X(t)dt)

= ∆(t)D(t) (α(t, R(t))− β(t, R(t), T )) fr(t, R(t), T )dt+D(t)∆(t)γ(t, R(t))fr(t, R(t), T )dW (t)

となる。ここで β の定義 (式 (6.9.2)または式 (6.9.3)) より

(α(t, R(t))− β(t, R(t), T )) fr(t, R(t), T )

= α(t, R(t))fr(t, R(t), T )−R(t)f(t, R(t), T ) + ft(t, R(t), T ) +
1

2
γ2(t, R(t))fr,r(t, R(t), T )

であるから、以上を代入することで所望の等式 (6.9.5)を得る。
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fr(t, r, T ) = 0とする。すると

d(D(t)X(t))

= D(t)(dX(t)−R(t)X(t)dt)

= ∆(t)D(t)

(
−R(t)f(t, R(t), T ) + ft(t, R(t), T ) +

1

2
γ2(t, R(t))fr,r(t, R(t), T )

)
dt

であるから、積分すれば

D(T )X(T )

= X(0) +

∫ T

0

∆(t)D(t)

(
−R(t)f(t, R(t), T ) + ft(t, R(t), T ) +

1

2
γ2(t, R(t))fr,r(t, R(t), T )

)
dt

となる。保有債券数 ∆(t)を調節して X を裁定機会のあるポートフォリオとすることを考える。そのために
は、右辺の積分の中身が ≥ 0であり、またある tに対して > 0となれば良いそうするためには

∆(t) = sign

(
D(t)

(
−R(t)f(t, R(t), T ) + ft(t, R(t), T ) +

1

2
γ2(t, R(t))fr,r(t, R(t), T )

))
とすればよく、このとき X に裁定機会があることと

R(t)f(t, R(t), T ) = ft(t, R(t), T ) +
1

2
γ2(t, R(t))fr,r(t, R(t), T )

は同値となる。

練習問題 6.3. (1)

(2)

(3)

解答. (1)。

d

ds

[
e−

∫ s
0
b(v)dvC(s, T )

]
= e−

∫ s
0
b(v)dv d

ds
C(s, T )− b(v)e−

∫ s
0
b(v)dvC(s, T )

= e−
∫ s
0
b(v)dv (b(s)C(s, T )− 1)− b(s)e−

∫ s
0
b(v)dvC(s, T )

= −e−
∫ s
0
b(v)dv.

(2)。

−e−
∫ t
0
b(v)dvC(t, T ) = e−

∫ T
0

b(v)dvC(T, T )− e−
∫ t
0
b(v)dvC(t, T )

=

∫ T

t

d

ds

[
e−

∫ s
0
b(v)dvC(s, T )

]
ds

= −
∫ T

t

e−
∫ s
0
b(v)dvds

であるから両辺に −e
∫ t
0
b(v)dv をかけることで

C(t, T ) =

∫ T

t

e−
∫ s
t
b(v)dvds,

つまり式 (6.5.10)を得る。
(3)。これは示すべきことが問題文中に書かれている。
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練習問題 6.4. (1)

(2)

(3)

(4)

(5)

(6)

解答. (1)。∫ T

t
C(t, T )du = log

(
2
σ2φ(t)

) なので、
C(t, T ) = − 2φ′(t)

σ2φ(t)

となり、また

C ′(t, T ) = −
2
(
φ′′(t)φ(t)− (φ′(t))2

)
σ2φ2(t)

= −2φ′′(t)

σ2φ(t)
+

1

2
σ2

(
2φ′(t)))

σ2φ(t)

)2

= −2φ′′(t)

σ2φ(t)
+

1

2
σ2C2(t, T )

となる。
(2)。式 (5.6.14)を

C ′(t, T )− 1

2
σ2C2(t, T ) = bC(t, T )− 1

と書き直すと、左辺は (1)の結果より
−2φ′′(t)

σ2φ(t)

であり、右辺は (1)の結果より
−b

2φ′(t)

σ2φ(t)
− 1

であるから、以上より
2φ′′(t)

σ2φ(t)
= b

2φ′(t)

σ2φ(t)
+ 1

となって、両辺に 1
2σ

2φ(t) をかけて整理することで所望の等式を得る。
(3)。線形常微分方程式の解は指数関数の線形和であるから、その係数などを求めれば良い。φ(t) =

a1e
λ1t + a2e

λ2t とおくと、

φ′(t) = a1λ1e
λ1t + a2λ2e

λ2t

φ′′(t) = a1λ
2
1e

λ1t + a2λ
2
2e

λ2t

であるから、(2)で得た方程式に代入して eλ1t, eλ2t の係数を比較すると、i = 1, 2に対して

λ2
i − bλi −

1

2
σ2 = 0

となる。この方程式の解は
λi =

b

2
±
√
b2 + 2σ2 =

b

2
± γ
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である。従って (2)で得た方程式の解はすべて、ある定数 a1, a2 により

φ = a1e
b
2 t+γt + a2e

b
2 t−γt

とかける。eT(
b
2±γ) を a1, a2 にかけて定数倍で置き換えれば所望の結果を得る。

(4)。(3)の結果を微分すれば φ′(t)が求まる。式 (6.9.8)で t = T とすれば φ′(T ) = 0であるから c1 = c2

を得る。
(5)。計算を実行するのみ。
(6)。A(T, T ) = 0を用いれば、

A(t, T ) = −2a

σ2

∫ T

t

(logφ(t))
′
ds = −2a

σ2
log

φ(T )

φ(t)

である。これに (5)の結果を代入すれば良い。

練習問題 6.5. (1)

(2)

(3)

解答. (1)。本文では述べられていないが、定理 6.3.1の多次元版がある？それを用いると E[h(X1(T ), X2(T ) |
F(s)] = g(s,X1(s), X2(s)) であるからマルチンゲール性は反復条件付きの性質より従う。割引かれていても
同じ。
(2)。

(dX1)
2 = γ2

1,1dt+ γ2
1,2dt

(dX2)
2 = γ2

2,1dt+ γ2
2,2dt

dX1dX2 = γ1,1γ2,1dt+ γ1,2γ2,2dt

であるから、

dg(t,X1(t), X2(t))

= gtdt+ gx1
dX1 + gx2

dX2

+
1

2
gx1,x1

(dX1)
2 + gx1,x2

dX1dX2 +
1

2
gx2,x2

(dX2)
2

= gtdt+ gx1 (β1dt+ γ1,1dW1 + γ1,2dW2) + gx2 (β2dt+ γ2,1dW1 + γ2,2dW2)

+

(
1

2
gx1,x1

(
γ2
1,1 + γ2

1,2

)
+ gx1,x2

(γ1,1γ2,1 + γ1,2γ2,2) +
1

2
gx2,x2

(
γ2
2,1 + γ2

2,2

))
dt

となる。dtの係数は

gt + gx1β1 + gx2β2

+
1

2
gx1,x1

(
γ2
1,1 + γ2

1,2

)
+ gx1,x2 (γ1,1γ2,1 + γ1,2γ2,2) +

1

2
gx2,x2

(
γ2
2,1 + γ2

2,2

)
であり、これが = 0 となる方程式は式 (6.6.3) そのものである。同じく、f(t,X1(t), X2(t)) =

e−r(T−t)g(t,X1(t), X2(t))であるから、

d(e−r(T−t)g) = −re−r(T−t)gdt+ e−r(T−t)dg = −rfdt+ e−r(T−t)dg
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となるが、ft = −rf + f = −rf + e−r(T−t)g と fxi = e−r(T−t)gxi , fxi,xj = e−r(T−t)gxi,xj に注意すれば、
dg の計算結果より f の満たす偏微分方程式 (6.6.4)が求まる。
(3)。(2)の最後の議論と同じく、式 (6.6.14)は式 (6.6.13)より導かれる。よって式 (6.6.13)を示せば良い。

(dX1)
2 = γ2

1,1dt+ γ2
1,2dt+ ργ1,1γ1,2dt

(dX2)
2 = γ2

2,1dt+ γ2
2,2dt+ ργ2,1γ2,2dt

dX1dX2 = γ1,1γ2,1dt+ γ1,2γ2,2dt+ ρ(γ1,1γ2,2 + γ1,2γ2,1)dt

であるから、

dg(t,X1(t), X2(t))

= gtdt+ gx1
dX1 + gx2

dX2

+
1

2
gx1,x1

(dX1)
2 + gx1,x2

dX1dX2 +
1

2
gx2,x2

(dX2)
2

= gtdt+ gx1 (β1dt+ γ1,1dW1 + γ1,2dW2) + gx2 (β2dt+ γ2,1dW1 + γ2,2dW2)

+
1

2
gx1,x1

(
γ2
1,1 + γ2

1,2 + ργ1,1γ1,2
)
dt+

1

2
gx2,x2

(
γ2
2,1 + γ2

2,2 + ργ2,1γ2,2
)
dt

+ gx1,x2 (γ1,1γ2,1 + γ1,2γ2,2 + ρ(γ1,1γ2,2 + γ1,2γ2,1)) dt

dtの係数を = 0とすれば式 (6.9.3)を得る。

練習問題 6.6. (1)

(2)

(3)

(4)

(5)

解答. (1)。方程式は各 j ごとに定まっているので、ここでは j を省略する。d(e
b
2 tX(t))を計算すると、

d(e
b
2 tX(t)) =

b

2
e

b
2 tX(t)dt+ e

b
2 tdX(t)

=
b

2
e

b
2 tX(t)dt+ e

b
2 t

(
− b

2
X(t) +

1

2
σdW

)
=

1

2
e

b
2 tσdW

となるので、これを ∫ t

0
で積分すれば

e
b
2 tX(t)−X(0) =

σ

2

∫ t

0

e
b
2udW (u)

が得られる。これを整理して所望の等式を得る。伊藤積分の項は正規確率変数となるので、X(t)は正規確率
変数の定数倍に定数を足したものであるから、X(t) も正規確率変数である。期待値をこのまま計算すれば、
伊藤積分の期待値は 0なので

E[X(t)] = e−
b
2 tX(0)
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となる。分散は、伊藤積分の等長性から、

Var(X(t)) = E[X2(t)]− E[X(t)]2

= e−bt

(
X2(0) + σX(0)E

[∫ t

0

e
1
2 budW (u)

]
+

σ2

4
E

[(∫ t

0

e
1
2 budW (u)

)2
])

− e−btX2(0)

=
σ2

4
e−btE

[∫ t

0

ebudu

]
)

=
σ2

4b
e−bt(ebt − 1)

=
σ2

4b
(1− e−bt)

となる。これは所望の結果である。
(2)。

√
RdB =

∑
j XjdWj であるから、

dR =
∑
j

d(X2
j )

=
∑
j

(
2XjdXj + (dXj)

2
)

=
∑
j

2Xj

(
− b

2
Xj +

1

2
σdWj

)
+

1

4
σ2
∑
j

dt


= −

∑
j

bX2
j dt+

d

4
σ2dt+ σ

∑
j

XjdWj

=

(
1

4
σ2 + bR

)
dt+ σ

√
RdB

となる。a = d
4σ

2 とすれば式 (6.9.19)となる。また

(dB)2 =
1

R
∼j1,j2 Xj1Xj2dWj1dWj2

=
1

R
∼i X

2
i dt

= dt

であるから B はブラウン運動である (B は伊藤積分の和なのでマルチンゲールである)。
(3)。(1)よりまだ示されていないのは Xj たちの独立性だけであるが、それはWj たちが独立であることか
ら従う。
(4)。µ = µ(t), v = v(t)と省略する。X は平均 µで分散 v の正規確率変数であるから、

E[euX
2

]

=
1√
2πv

∫ ∞

−∞
exp

(
ux2 − 1

2v
(x− µ)2

)
dx

=
1√
2πv

∫ ∞

−∞
exp

(
−1− 2uv

2v

(
x2 − 2

1− 2uv
µx+

1

1− 2uv
µ2

))
dx

=
1√
2πv

∫ ∞

−∞
exp

(
−1− 2uv

2v

(
x− µ

1− 2uv

)2

+
1− 2uv

2v

(
µ

1− 2uv

)2

− 1

2v
µ2)

)
dx
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=
1√
2πv

∫ ∞

−∞
exp

(
−1− 2uv

2v

(
x− µ

1− 2uv

)2

+
1

2v
µ2

(
1

1− 2uv
− 1

))
dx

=
1√
2πv

∫ ∞

−∞
exp

(
−1− 2uv

2v

(
x− µ

1− 2uv

)2

+
u

1− 2uv
µ2

)
dx

=
1√
2πv

exp

(
u

1− 2uv
µ2

)∫ ∞

−∞
exp

(
−1− 2uv

2v
x2

)
dx

=
1√

1− 2uv
exp

(
u

1− 2uv
µ2

)
となる。これは所望の結果である。
(5)。各 Xj は独立なので X2

j も独立である。あとは (4) の結果を掛け合わせることで所望の結果を得
る。

練習問題 6.7. (1)

(2)

(3)

(4)

(5)

解答. (1)。
e−rtc(t, S(t), V (t)) = Ẽ

[
e−rT c(T, S(T ), V (T ))

∣∣Ft
]

であるから反復条件付きの性質より e−rtc(t, S(t), V (t))はマルチンゲールである。微分を計算する。

(dS)2 = V S2dt, (dV )2 = σ2V dt,dSdV = σρSV dt,

なので、

d(e−rtc) = −re−rtcdt+ e−rtdc

= −re−rtcdt+ e−rt(ctdt+ csdS + cvdV )

+ e−rt

(
1

2
cs,s(dS)

2 +
1

2
cv,v(dV )2 + cs,vdSdV

)
= −re−rtcdt+ e−rt

(
ctdt+ cs(rSdt+

√
V SdW̃1) + cv((a− bV )dt+ σ

√
V dW̃2)

)
+ e−rt

(
1

2
cs,sV S2dt+

1

2
cv,vσ

2V dt+ cs,vσρSV dt

)
となる。ここでマルチンゲール性から dtの係数を = 0とすることで方程式

− rc+ ct + rscs + (a− bv)cv

+
1

2
s2vcs,s +

1

2
σ2vcv,v + σρsvcs,v = 0

を得る。これを整理すると式 (6.9.26)となる。
(2)。マジでただだるいだけの計算。流石に省略。
(3)。df(t,X(t), V (t)) を計算して、f(t,X(t), V (t)) がマルチンゲールであることを使って dt 項を = 0 と
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すれば所望の方程式を得る。実際、(dX)2 = V dt, (dV )2 = σV dt, dXdV = σV ρdt であることに注意すれば、

df = ftdt+ fxdX + fvdV +
1

2
fx,x(dX)2 +

1

2
fv,v(dV )2 + fx,vdXdV

=

(
ft +

1

2
V fx,x +

1

2
σV fv,v + σV ρfx,v

)
dt

+ fx

((
r +

1

2
V

)
dt+

√
V dW1

)
+ fv

(
(a− bV + ρσV ) dt+ σ

√
V dW2

)
=

(
ft + fv (a− bV + ρσV ) + fx

(
r +

1

2
V

)
+

1

2
V fx,x +

1

2
σV fv,v + σV ρfx,v

)
dt

+ fx
√
V dW1 + fvσ

√
V dW2

であるから、dtの係数の X,V をそれぞれ x, v で置き換えれば式 (6.9.32)を得る。t = T とすれば境界条件
が出る。
(4)。(3)と同じことを g(t,X(t), V (t))でやるだけ。省略してもいいだろう。
(5)。普通に t = T を代入すると

c(T, s, v) = sf(T, log s, v)−Kg(T, log s, v)

= sIlog s≥logK −KIlog s≥logK

= sIs≥K −KIs≥K

= (s−K)+

となる。

練習問題 6.8.

解答. pは初期条件を X(t) = xとしたときに得られる X(T )の密度関数であるから、任意の可測関数 hに対
して

Et,xh(X) =

∫ ∞

0

h(y)p(t, T, x, y)dy

となる。g(t, x) :
def
= Et,xh(X)とおいて dg(t,X(t))を計算すれば、(dX)2 = γ2dtであるから、

dg = gtdt+ gxdX +
1

2
gx,x(dX)2

= gtdt+ gx (βdt+ γdW ) +
1

2
γ2gx,xdt

=

(
gt + βgx +

1

2
γ2gx,x

)
dt+ γgxdW

となる。ここで g(t,X(t))がマルチンゲールであることから dtの係数を = 0とおけば

gt + βgx +
1

2
γ2gx,x = 0
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を得る。一方、g(t, x) =
∫∞
0

h(y)p(t, T, x, y)dy であるから、

gt =

∫ ∞

0

h(y)pt(t, T, x, y)dy,

gx =

∫ ∞

0

h(y)px(t, T, x, y)dy,

gx,x =

∫ ∞

0

h(y)px,x(t, T, x, y)dy,

となって、方程式∫ ∞

0

h(y)

(
pt(t, T, x, y) + β(t, x)px(t, T, x, y) +

1

2
γ2px,x(t, T, x, y)

)
dy = 0

を得る。これが任意の hで成立するためには、カッコの中身が 0とならなければならない。なぜなら、カッコ
の中身を q とおけば、たとえば h = sign(q)とすることで、被積分関数がつねに ≥ 0であるようにでき、この
とき ∫∞

0
を施して = 0となるには q = 0とならなければならない。以上で

pt(t, T, x, y) + β(t, x)px(t, T, x, y) +
1

2
γ2px,x(t, T, x, y) = 0

となって、整理すれば所望の方程式を得る。

練習問題 6.9. (1)

(2)

(3)

(4)

(5)

解答. (1)。(dX)2 = γ2dtなので

dhb(X) = h′
b(X)dX +

1

2
h′′
b (X)(dX)2

= h′
b(X) (βdt+ γdW ) +

1

2
γ2h′′

b (X)dt

=

(
βh′

b(X) +
1

2
γ2h′′

b (X)

)
dt+ γh′

b(X)dW

となる。
(2)。h′

b(x) = 0, (x ≥ b)と hb(b) = 0から hb(x) = 0, (x ≥ b)である。従って期待値をとるときは ∫ b

0
での

積分として良い (仮定から hb(x) = 0, (x < 0)でもある)。(1)の結果を ∫ T

t
で積分して期待値をとれば、

E [hb(X(T ))− hb(X(t))]　 =

∫ T

t

E
[
βh′

b(X) +
1

2
γ2h′′

b (X)

]
du

=

∫ T

t

∫ b

0

(
β(t, y)h′

b(y) +
1

2
γ2(t, y)h′′

b (y)

)
p(t, u, x, y)du

となる。左辺は
=

∫ b

0

hb(y)p(t, T, x, y)dy − hb(x)

であるから、整理すれば所望の等式を得る。
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(3)。第二項を計算すると、hb(b) = hb(0) = 0であるから、∫ b

0

β(u, y)p(t, u, x, y)h′
b(y)dy

= β(u, b)p(t, u, x, b)hb(b)− β(u, 0)p(t, u, x, 0)hb(0)−
∫ b

0

∂

∂y
(β(u, y)p(t, u, x, y))hb(y)dy

= −
∫ b

0

∂

∂y
(β(u, y)p(t, u, x, y))hb(y)dy

である。第三項を計算すると、h′
b(b) = h′

b(0) = hb(b) = hb(0) = 0であるから、∫ b

0

γ2(u, y)p(t, u, x, y)h′′
b (y)dy

= γ2(u, b)p(t, u, x, b)h′
b(b)− γ2(u, 0)p(t, u, x, 0)h′

b(0)−
∫ b

0

∂

∂y

(
γ2(u, y)p(t, u, x, y)

)
h′
b(y)dy

= −
∫ b

0

∂

∂y
(β(u, y)p(t, u, x, y))h′

b(y)dy

=
∂

∂y
(β(u, y)p(t, u, x, y)) |y=bhb(b)−

∂

∂y
(β(u, y)p(t, u, x, y)) |y=0hb(0) +

∫ b

0

∂2

∂y2
(
γ2(u, y)p(t, u, x, y)

)
hb(y)dy

=

∫ b

0

∂2

∂y2
(
γ2(u, y)p(t, u, x, y)

)
hb(y)dy

である。以上を組み合わせると所望の結果が得られる。
(4)。言われた通り微分するだけ。流石に省略。
(5)。hb は問 (1) の条件を満たすものであればなんでもいい。だからもしこのような y1 < y2 があれば、

(y1, y2)に含まれるある区間内でのみ hb(y) > 0 (または hb(y) < 0) であって他の部分で hb(y) = 0となる hb

がとれる。このとき式 (6.9.50)の等号は成り立たない。

練習問題 6.10. (1)

(2)

(3)

解答. (1)。部分積分すると∫ ∞

K

(
(y −K)

∂

∂y
ryp̃(0, T, x, y) + ryp̃(0, T, x, y)

)
dy = [(y −K)ryp̃(0, T, x, y)]

∞
K = 0

となるので整理すれば所望の等式を得る。
(2)。計算すると、

1

2

∫ ∞

K

(y −K)
∂2

∂y2
(
σ2(T, y)y2p̃(0, T, x, y)

)
dy

=

[
(y −K)

∂

∂y

(
σ2(T, y)y2p̃(0, T, x, y)

)]∞
K

− 1

2

∫ ∞

K

∂

∂y

(
σ2(T, y)y2p̃(0, T, x, y)

)
dy

= −1

2

[
∂

∂y

(
σ2(T, y)y2p̃(0, T, x, y)

)]∞
K

=
1

2
σ2(T,K)K2p̃(0, T, x,K)
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となる。
(3)。計算すると、

cT (0, T, x,K)

⋆
= −rc(0, T, x,K) + e−rT

∫ ∞

K

(y −K)p̃T (0, T, x, y)dy

♠
= −re−rT

∫ ∞

K

(y −K)p̃(0, T, x, y)dy + e−rT

∫ ∞

K

(y −K)p̃T (0, T, x, y)dy

♣
= −re−rT

∫ ∞

K

(y −K)p̃(0, T, x, y)dy

+ e−rT

∫ ∞

K

(y −K)

(
− ∂

∂y
(ryp̃(0, T, x, y)) +

1

2

∂2

∂y2
(
σ2(T, y)y2p̃(0, T, x, y)

))
dy

♡
= rKe−rT

∫ ∞

K

p̃(0, T, x, y)dy +
1

2
e−rT

∫ ∞

K

(y −K)
∂2

∂y2
(
σ2(T, y)y2p̃(0, T, x, y)

)
dy

♢
= rKe−rT

∫ ∞

K

p̃(0, T, x, y)dy + e−rTσ2(T,K)K2p̃(0, T, x, y)

= −rKcK(0, T, x,K) +
1

2
σ2(T,K)K2cK,K(0, T, x,K)

となる。ただし⋆の箇所は式 (6.9.52)を微分することで得られる式 (6.9.53)を用い、♠の箇所は式 (6.9.52)

を用い、♣の箇所は式 (6.9.51)を用い、♥の箇所は式 (6.9.54)を用い、♦の箇所は式 (6.9.56)を用い、 の
箇所は練習問題 5.9の計算結果を用いた。
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7 エキゾチック・オプション
練習問題 7.1. (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

解答. (1)。普通に計算する。

δ±(τ, s) :
def
=

1

σ
√
τ

(
log s+

(
r ± 1

2
σ2

)
τ

)
であるから、

d

dt
δ±

(
τ,

x

c

)
= −dτ

dt

1

2σ
√
τ3

log s+
dτ

dt

1

2σ
√
τ

(
r ± 1

2
σ2

)
=

1

2στ
√
τ

(
log s−

(
r ± 1

2
σ2

)
τ

)
= − 1

2τ
δ±(τ, s)

となる。
(2)。

δ±

(
τ,

x

c

)
:
def
=

1

σ
√
τ

(
log x− log c+

(
r ± 1

2
σ2

)
τ

)
δ±

(
τ,

c

x

)
:
def
=

1

σ
√
τ

(
log c− log x+

(
r ± 1

2
σ2

)
τ

)
であるから、

d

dx
δ±

(
τ,

x

c

)
=

1

xσ
√
τ

d

dx
δ±

(
τ,

c

x

)
= − 1

xσ
√
τ

となる。
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(3)。

δ+(τ, s)− δ−(τ, s) =
1

σ
√
τ

(
log s+

(
r +

1

2
σ2

)
τ

)
− 1

σ
√
τ

(
log s+

(
r − 1

2
σ2

)
τ

)
=

1

2σ
√
τ
σ2τ +

1

2σ
√
τ
σ2τ

= σ
√
τ

δ+(τ, s) + δ−(τ, s) =
1

σ
√
τ

(
log s+

(
r +

1

2
σ2

)
τ

)
+

1

σ
√
τ

(
log s+

(
r − 1

2
σ2

)
τ

)
=

2

σ
√
τ
(log s+ rτ)

δ2+(τ, s)− δ2−(τ, s) = (δ+(τ, s)− δ−(τ, s)) (δ+(τ, s) + δ−(τ, s))

= σ
√
τ

2

σ
√
τ
(log s+ rτ)

= 2 (log s+ rτ)

であり、また N ′(x) = 1√
2π

e−x2/2 であるから、

N ′(δ+(τ, s))

N ′(δ−(τ, s))
= exp

(
−1

2
δ2+(τ, s) +

1

2
δ2−(τ, s)

)
= exp

(
−1

2
δ2+(τ, s) +

1

2
δ2−(τ, s)

)
= exp (− (log s+ rτ))

=
e−rτ

s

となる。
(4)。

δ±(τ, s)− δ±(τ, s
−1) =

1

σ
√
τ

(
log s+

(
r ± 1

2
σ2

)
τ

)
− 1

σ
√
τ

(
− log s+

(
r ± 1

2
σ2

)
τ

)
=

2

σ
√
τ
log s

δ±(τ, s) + δ±(τ, s
−1) =

1

σ
√
τ

(
log s+

(
r ± 1

2
σ2

)
τ

)
+

1

σ
√
τ

(
− log s+

(
r ± 1

2
σ2

)
τ

)
=

2

σ
√
τ

(
r ± 1

2
σ2

)
τ

δ2±(τ, s)− δ2±(τ, s
−1) =

(
δ±(τ, s)− δ±(τ, s

−1)
) (

δ±(τ, s) + δ±(τ, s
−1)
)

=
2

σ
√
τ
log s

2

σ
√
τ

(
r ± 1

2
σ2

)
τ

=
4

σ2τ

(
r ± 1

2
σ2

)
τ log s

=

(
4r

σ2
± 2

)
log s
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であるから、

N ′(δ±(τ, s))

N ′(δ±(τ, s−1))
= exp

(
−1

2
δ2±(τ, s) +

1

2
δ2±(τ, s)

)
= exp

(
−
(
2r

σ2
± 1

)
log s

)
= s−(

2r
σ2 ±1)

(5)と (6)はすでに計算済みである。
(7)。

N ′′(y) =

(
1√
2π

e−
1
2y

2

)′

= −y · 1√
2π

e−
1
2y

2

= −yN ′(y)

となる。
(8)。(9)。(10)。(11)。やる意味ねーって思ったからもうやらない。

練習問題 7.2.

解答. やる意味がなさそうな演習なのでやらない。

練習問題 7.3.

解答. まず

S(T ) = S(0)eσŴ (T )

= S(t)eσ(Ŵ (T )−Ŵ (t))

である。ここで Ŵ (T )− Ŵ (t)は F(t)と独立であることに注意する。次に、

M̂(T )− M̂(t) = max
0≤u≤T

Ŵ (u)− max
0≤u≤t

Ŵ (u)

=

(
max

t≤u≤T
Ŵ (u)− max

0≤u≤t
Ŵ (u)

)+

=

(
max

t≤u≤T

(
Ŵ (u)− Ŵ (t)

)
− M̂(t) + Ŵ (t)

)+

と式変形することで

Y (T ) = Y (0)eσM̂(T )

= Y (t)eσ(M̂(T )−M̂(t))

= Y (t)eσ(maxt≤u≤T (Ŵ (u)−Ŵ (t))−M̂(t)+Ŵ (t))
+

を得る。ここでmaxt≤u≤T

(
Ŵ (u)− Ŵ (t)

)
は F(t)と独立であり、M̂(t), Ŵ (t)は F(t)-可測であることに注

意する。確率変数 F と関数 Gを

F (s, y, w,m) :
def
= f

(
seσ(Ŵ (T )−Ŵ (t)), yeσ(maxt≤u≤T (Ŵ (u)−Ŵ (t))−m+w)

+)
G(s, y, w,m) :

def
= E [F (s, y, w,m)]
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と定義すれば、これまでの計算結果を考慮すれば、

F (S(t), Y (t), Ŵ (t), M̂(t)) = f(S(T ), Y (T ))

となることがわかる。また Ŵ (T ) − Ŵ (t)と maxt≤u≤T

(
Ŵ (u)− Ŵ (t)

)
は F(t)と独立な確率変数であり、

S(t), Y (t), Ŵ (t), M̂(t)は F(t)-可測な確率変数であるから、独立性の補題より

G(S(t), Y (t), Ŵ (t), M̂(t)) = E
[
F (S(t), Y (t), Ŵ (t), M̂(t))

∣∣∣F(t)
]
= E [f(S(T ), Y (T ))|F(t)]

となる。ここで

Ŵ (t) =
1

σ
log

(
S(t)

S(0)

)
M̂(t) =

1

σ
log

(
Y (t)

Y (0)

)

であることに注意すれば、G(S(t), Y (t), Ŵ (t), M̂(t))は S(t), Y (t)に関する関数として表すことができる。こ
れは所望の結果である。

練習問題 7.4.

解答. まず dŴ = dW̃ + αdtなので (dŴ )2 = dtであり、従って (dS)2 = (SdŴ )2 = S2dtとなる。以上よ
り、区間 [0, t]の分割 Πに対して

m∑
j=0

|S(tj)− S(tj−1)|2 →
∫ t

0

S2(u)du , (‖Π‖ → 0)

となる。また、区間 [0, t]上の単調増加関数 f に対して、その二次変分を計算すると、区間 [0, t]の分割 Πに
対して

m∑
j=0

|f(tj)− f(tj−1)|2 ≤
(

max
0≤j≤m

f(tj)− f(tj−1)

) m∑
j=0

|f(tj)− f(tj−1)|

=

(
max

0≤j≤m
f(tj)− f(tj−1)

)
(f(t)− f(0))

→ 0 , (‖Π‖ → 0)

となる。Y (u)はどの経路でも単調増加であるから、従って
m∑
j=0

|Y (tj)− Y (tj−1)|2 → 0 , (‖Π‖ → 0)

となる。あとは、コーシーシュワルツの不等式より、

m∑
j=0

|Y (tj)− Y (tj−1)| |S(tj)− S(tj−1)| ≤

 m∑
j=0

|Y (tj)− Y (tj−1)|2
m∑
j=0

|S(tj)− S(tj−1)|2
 1

2

→ 0 , (‖Π‖ → 0)

となる。以上で示された。
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練習問題 7.5.

解答. 単純計算。やる意味ない。

練習問題 7.6.

解答. 単純計算。やる意味ない。

練習問題 7.7. (1)

(2)

(3)

(4)

解答. (1)。S は幾何ブラウン運動 dS = rSdu+ σSdW̃ に従うので、割引過程 e−ruS は

d(e−ruS) = e−rudS − re−ruSdu = σe−ruSdW̃

となってリスク中立測度に関してマルチンゲールである。とくに u ≥ t に対して E [e−ruS(u)|F(t)] =

e−rtS(t) であるから、整理すれば
E [S(u)|F(t)] = er(u−t)S(t)

を得る。以上より、

v(t, x, y) = e−r(T−t)E

[
1

T

∫ T

0

S(u)du

∣∣∣∣∣F(t)

]

= e−r(T−t)E

[
1

T

∫ t

0

S(u)du+
1

T

∫ T

t

S(u)du

∣∣∣∣∣F(t)

]

=
e−r(T−t)

T

∫ t

0

S(u)du+
e−r(T−t)

T
E

[∫ T

t

S(u)du

∣∣∣∣∣F(t)

]

=
e−r(T−t)

T
y +

e−r(T−t)

T

∫ T

t

E [S(u)|F(t)] du

=
ye−r(T−t)

T
+

e−r(T−t)

T

∫ T

t

er(u−t)S(t)du

=
ye−r(T−t)

T
+

e−rT

T
S(t)

∫ T

t

erudu

=
ye−r(T−t)

T
+

e−rT

rT
S(t)

(
erT − ert

)
=

ye−r(T−t)

T
+

1

rT

(
1− e−r(T−t)

)
x

となる。
(2)。微分を計算すると、

vt(t, x, y) =
rye−r(T−t)

T
− xe−r(T−t)

T

vx(t, x, y) =
1

rT

(
1− e−r(T−t)

)
vy(t, x, y) =

e−r(T−t)

T

95



vx,x(t, x, y) = 0

となる。従って

vt(t, x, y) + rxvx(t, x, y) + xvy(t, x, y) +
1

2
σ2x2vx,x(t, x, y)

=
rye−r(T−t)

T
− xe−r(T−t)

T
+ rx

1

rT

(
1− e−r(T−t)

)
+ x

e−r(T−t)

T

=
rye−r(T−t)

T
+

1

T

(
1− e−r(T−t)

)
x

= rv(t, x, y)

となり、式 (7.5.8)が成立する。x = 0とすれば、K = 0, y ≥ 0であるから、

v(t, 0, y) =
ye−r(T−t)

T
= e−r(T−t)

( y
T

−K
)+

となり、式 (7.5.9)が成立する。t = T とすれば、K = 0, y ≥ 0であるから、

v(T, x, y) =
y

T
=
( y
T

−K
)+

となり、式 (7.5.11)が成立する。以上で全て確認できた。
(3)。∆(t) = vx(t, x, y)は (2)で求めている。これはそもそも x, y と無関係であるから vx(t, S(t), Y (t))は
確率的ではない。
(4)。X の従う確率微分方程式は、条件から、

dX = ∆dS + (X −∆S)rdt = ∆(rSdt+ σSdW̃ ) + (X −∆S)rdt = σ∆SdW̃ + rXdt

である。割引過程 e−rtX の微分は

d(e−rtX) = −re−rtXdt+ e−rtdX = e−rt(−rXdt+ dX) = e−rtσ∆SdW̃

となる。これを ∫ T

0
で積分することを考える。

e−rt∆(t) = e−rtvx(t, x, y) =
1

rT

(
e−rt − e−rT

)
であり、また

X(0) = v(0, S(0), 0) =
S(0)

rT

(
1− e−rT

)
であることに注意する。d(e−rtS) = σe−rtSdW̃ と dS = σSdW̃ + rSdt より、d (e−rtX(t)) の ∫ T

0
での積
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分は、

e−rTX(T )−X(0)

=

∫ T

0

e−rtσ∆(t)S(t)dW̃ (t)

=
1

rT

∫ T

0

σ
(
e−rt − e−rT

)
S(t)dW̃ (t)

=
1

rT

∫ T

0

σe−rtS(t)dW̃ (t)− e−rT

rT

∫ T

0

σS(t)dW̃ (t)

=
1

rT

∫ T

0

d(e−rtS(t))− e−rT

rT

∫ T

0

dS(t) +
e−rT

T

∫ T

0

S(t)dt

=
1

rT

(
e−rTS(T )− S(0)

)
− e−rT

rT
(S(T )− S(0)) +

e−rT

T

∫ T

0

S(t)dt

=
S(0)

rT

(
e−rT − 1

)
+

e−rT

T

∫ T

0

S(t)dt

= −X(0) +
e−rT

T

∫ T

0

S(t)dt

となる。これを整理すれば所望の等式を得る。

練習問題 7.8.

解答. 式 (7.5.22)で r → 0とすることで

γ(t) =

{
1 , (t ≤ T − c)
T−t
c , (t ≥ T − c)

と予測できる。実際にこの γ が求めるもの、つまり式 (7.5.27)を満たすものであることを示す。
金利 0なので dX = γdS = σγSdW̃ である。とくに S,X はマルチンゲールである。よって

X(0) = E [X(T )]

= E

[
1

c

∫ T

T−c

S(u)du−K

]

=
1

c

∫ T

T−c

E [S(u)] du−K

=
1

c

∫ T

T−c

S(0)du−K

= S(0)−K

である。また
d(γS) = γdS + γ′Sdu

であるから、dX = d(γS)− γ′Sduとなることがわかる。この両辺を ∫ t

0
で積分する。u ≤ T − cに対しては
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γ′(u) = 0であるから、t ≤ T − cのときは

X(t) = X(0) +

∫ t

0

d(γ(u)S(u))−
∫ t

0

γ′(u)S(u)du

= X(0) + γ(t)S(t)− γ(0)S(0)

= X(0) + S(t)− S(0)

= S(t)−K

となり、u ≥ T − cに対しては γ′(u) = − 1
c であるから、t ≥ T − cのときは

X(t) = X(0) +

∫ t

0

d(γ(u)S(u))−
∫ t

0

γ′(u)S(u)du

= X(0) + γ(t)S(t)− γ(0)S(0) +
1

c

∫ t

T−c

S(u)du

=
T − t

c
S(t)−K +

1

c

∫ t

T−c

S(u)du

となる。とくに t = T のときは X(K) = 1
c

∫ T

T−c
S(u)du−K となって所望の結果を得る。

練習問題 7.9. (1)

(2)

(3)

解答. (1)。普通に計算すると

vt(t, s, x) = sgt(t, y),

vs(t, s, x) = g(t, y) + s ·
(
−x

s2
gy(s, y)

)
= g(t, y)− ygy(t, y),

vx(t, s, x) = s
1

s
gy(t, y)

= gy(t, y),

vs,s(t, s, x) =
∂

∂s
(g(t, y)− ygy(t, y))

=
−x

s2
gy(t, y)−

(
−x

s2
g(t, y) + y · −x

s2
gy,y(t, y)

)
=

y2

s
gy,y(t, y),

vs,x(t, s, x) =
∂

∂s
gy(t, y)

=
−x

s2
gy,y(t, y)

=
−y

s
gy,y(t, y),

vx,x(t, s, x) =
∂

∂x
gy(t, y)

=
1

s
gy,y(t, y),

となる。これらは所望の結果である。
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(2)。普通に考えたら e−rtv (t, S(t), X(t)) = Ẽ
[
e−rTX+(T )

∣∣F(t)
] なんだから反復条件付きの性質から勝

手にマルチンゲールになるはずだけど、この問題の意図はそうじゃない？たぶん v(t, s, x) = sg(t, y)と g の
満たす微分方程式 (7.5.39) から直接 v がマルチンゲールであることを示せということだと思う。クソ面倒だ
しやる意味が感じられないけど仕方なく計算をしてやると、

dS = rSdt+ σSdW̃

dX = rXdt+ σγSdW̃

(dS)2 = σ2S2dt

dSdX = σ2γS2dt

(dX)2 = σ2γ2S2dt

なので、

d
(
e−rtv

)
= e−rtdv − re−rtvdt

= e−rt

(
−rvdt+ vtdt+ vsdS + vxdX +

1

2
vs,s(dS)

2 + vs,xdSdX +
1

2
vx,x(dX)2

)
= e−rt

(
−rv + vt + rSvs + rXvx +

1

2
σ2S2vs,s + σ2γS2vs,x +

1

2
σ2γ2S2vx,x

)
dt

+ (何らか)dW̃

となる。dtの係数が 0になれば良いので、カッコ内を計算する。S(t) = s,X(t) = xとおく。(1)での計算結
果と x = sy より、

vt + rsvs + rxvx +
1

2
σ2s2vs,s + σ2γs2vs,x +

1

2
σ2γ2s2vx,x

= sgt + rs(g − ygy) + rxgy +
1

2
σ2s2

y2

s
gy,y + σ2γs2

(
−y

s
gy,y

)
+

1

2
σ2γ2s2

1

s
gy,y

= sgt + rsg +
1

2
σ2s

(
y2 − 2yγ + γ2

)
gy,y

= rsg + s

(
gt +

1

2
σ2(γ − y)2gy,y

)
⋆
= rsg

♠
= rv

となる。ただし⋆の箇所で g の満たす微分方程式 (7.5.39)を用い、♠の箇所は v の定義 (つまり v = sg) を
用いた以上より dtの係数は 0となり、e−rtv はマルチンゲールであることが示された。
(3)。デルタ・ヘッジ法 (cf. 4.5.3 節) で求める。まずヘッジ・ポートフォリオの構成から、V (t) =

v(t, S(t), X(t))は次の確率微分方程式を満たす：

dV = ∆dS + r(V −∆S)dt = ∆
(
rSdt+ σSdW̃

)
+ rV dt− r∆rSdt = rV dt+ σS∆dW̃
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次に普通に v(t, S(t), X(t))を微分すると、

dS = rSdt+ σSdW̃ ,

dX = rXdt+ σγSdW̃ ,

(dS)2 = (何らか)dt,

(dX)2 = (何らか)dt,

dSdX = (何らか)dt,

であるから、

d (v (t, S(t), X(t))) = (何らか)dt+ vsdS + vxdX

= (何らか)dt+ vsσSdW̃ + vxσSγdW̃

= (何らか)dt+ σS (vs + γvx) dW̃

となる。ここで dW̃ の係数を比較すれば、

∆(t) = vs(t, S(t), X(t)) + γ(t)vx(t, S(t), X(t))

を得る。γ の明示的な式は式 (7.5.22)で与えられていることに注意。以上で ∆が求まった。
コメント：本文では唐突に γ を定義しているが、γ の式 (7.5.22)も同様の方法で求めることができる。
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8 アメリカン派生証券
練習問題 8.1.

解答. x > Lに対しては
v′L(x) =

K − L

L− 2r
σ2

(
− 2r

σ2

)
x− 2r

σ2 −1

であるから、x → L+とすれば

v′L(L+) = − 2r

σ2

K − L

L
= −2r(K − L)

σ2L

となる。v′L(L+) = −1 とすれば、2r(K − L) = σ2L を得て、変形すれば 2rK = (2r + σ2)L であるから、
結局

L =
2r

2r + σ2
K

がわかる。

練習問題 8.2.

解答. Li =
2r

2r+σ2Ki , (i = 1, 2)とおく。このとき、式 (8.3.11)と式 (8.3.12)より、

v1(x) =

K1 − x , (0 ≤ x ≤ L1),

(K1 − L1)
(

x
L1

)− 2r
σ2

, (L1 ≤ x),
v2(x) =

K2 − x , (0 ≤ x ≤ L2),

(K2 − L2)
(

x
L2

)− 2r
σ2

, (L2 ≤ x),

となる。v2 は行使価格が K2 である永久アメリカン・プット価格に対する線形相補条件 (式 (8.3.18)) を満た
すので、

v2(x) ≥ (K2 − x)+ ≥ (K1 − x)+

がわかり、とくに式 (8.8.1)が成立する。また、式 (8.3.16)と式 (8.3.17)より

rv2(x)− rxv′2(x)−
1

2
σ2x2v′′2 (x) =

{
0 , (x > L2),

rK2 , (0 ≤ x < L2),

であるから、特に式 (8.8.2) も成立する。さらに K1 < K2 であることに注意すれば L1 < L2 であり、また
σ > 0であることに注意すれば L1 < K1 であるから、L1 < x < min{K1, L2}となる xに対しては

v2(x) = K2 − x > K1 − x = (K1 − x)+

と
rv2(x)− rxv′2(x)−

1

2
σ2x2v′′2 (x) = rK2 > 0

が成立する。特に条件 (8.8.3)は満たされない。

練習問題 8.3. (1)

(2)

(3)
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(4)

(5)

(6)

解答. (1)。誘導に従って pを決めても良いが、練習のためにも普通に解く。式 (8.8.4)に x = et を代入すれば

rv(et)− retv′(et)− 1

2
σ2e2tv′′(et) = 0

となる。ここで (v(et))′ = etv′(et)と

(v(et))′′ =
(
etv′(et)

)′
= etv′(et) + e2tv′′(et) = (v(et))′ + e2tv′′(et)

に注意すれば、上の方程式は

0 = rv(et)− r(v(et))′ − 1

2
σ2
(
(v(et))′′ − (v(et))′

)
= rv(et) +

(
1

2
σ2 − r

)
(v(et))′ − 1

2
σ2(v(et))′′

と整理できる。w(t) = v(et)とおけば

1

2
σ2 d2

dt2
w −

(
1

2
σ2 − r

)
d

dt
w − rw = 0

であり、これは定数係数の微分方程式である。

0 =

[
1

2
σ2

(
d

dt
− 1

)
d

dt
+ r

(
d

dt
− 1

)]
w

=

[(
1

2
σ2 d

dt
+ r

)(
d

dt
− 1

)]
w

と整理して wの係数を = 0とし、 d
dt に関する方程式として解けば、 d

dt = 1,− 2r
σ2 である。これに wを右から

かけると
d

dt
w = w ,

d

dt
w = − 2r

σ2
w

を得て、このような wは w = et, e−
2r
σ2 t となる。特に wに関する上記の微分方程式の解は et と e−

2r
σ2 t の線形

結合である。同様に、t = log xを代入することで、v は x, x− 2r
σ2 の線形結合であることがわかる。以降、

v(x) = Ax− 2r
σ2 +Bx

と置く。
(2)。そのような 0 < x1 < x2 < ∞が存在したとする。

v′(x) = − 2r

σ2
Ax− 2r

σ2 −1 +B
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であるから、

v(x)
x→x1+−−−−−→ Ax

− 2r
σ2

1 +Bx1,

v(x)
x→x1−−−−−−→ (K − x1)

+,

v′(x)
x→x1+−−−−−→ − 2r

σ2
Ax

− 2r
σ2 −1

1 +B,

v′(x)
x→x1−−−−−−→ −1, (x1 ≤ K) , 0, (x1 > K),

v(x)
x→x2−−−−−−→ Ax

− 2r
σ2

2 +Bx2,

v(x)
x→x2+−−−−−→ (K − x2)

+,

v′(x)
x→x2−−−−−−→ − 2r

σ2
Ax

− 2r
σ2 −1

2 +B,

v′(x)
x→x2+−−−−−→ −1, (x2 ≤ K) , 0, (x2 > K),

となる。
x1 < x2 ≤ K のとき。v と v′ の連続性から

Ax
− 2r

σ2

1 +Bx1 = K − x1,

− 2r

σ2
Ax

− 2r
σ2 −1

1 +B = −1,

Ax
− 2r

σ2

2 +Bx2 = K − x2,

− 2r

σ2
Ax

− 2r
σ2 −1

2 +B = −1,

を得る。第二式の両辺に σ2

2r x1 をかけて第一式と両辺足し合わせると、

K = x1(B − 1)

(
1 +

σ2

2r

)
を得る。x2 の方でも同じことをすれば

K = x2(B − 1)

(
1 +

σ2

2r

)
を得る。x1 6= x2,K > 0であるから、これらの等式が同時に成立することはない。
x1 ≤ K ≤ x2 のときも同様に

x1(B − 1)

(
1 +

σ2

2r

)
= K = x2

(
B

(
1 +

σ2

2r

)
+ 1

)
を得るが、これらから B > 1がわかり、すると x1 < x2 より

x1(B − 1)

(
1 +

σ2

2r

)
< x2B

(
1 +

σ2

2r

)
< x2

(
B

(
1 +

σ2

2r

)
+ 1

)
となって矛盾である。
K ≤ x1 < x2 のときも同様に

x1

(
B

(
1 +

σ2

2r

)
+ 1

)
= K = x2

(
B

(
1 +

σ2

2r

)
+ 1

)
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を得るが x1 < x2 より矛盾である。
(3)。もしそのような x2 があれば v(0) = 0となるがそれはK > 0という仮定に反する。
(4)。これは (3)で示している通り。
(5)。導関数が x = K で連続にならないから。
(6)。x1 ≥ K と仮定すると v′ が x = K で連続とならないため矛盾。従って x1 < K である。x > x1 のも
とでは

v(x) = Ax− 2r
σ2 +Bx

であるが、x → ∞とすれば、v(x)の有界性より B = 0がわかる。また、v, v′ の連続性から、

Ax
− 2r

σ2

1 = K − x1

− 2r

σ2
Ax

− 2r
σ2 −1

1 = −1

を得る (x1 < K に注意)。第一式より
A = x

2r
σ2

1 (K − x1)

となる。第二式に代入すれば、

−1 = − 2r

σ2
x

2r
σ2

1 (K − x1)x
− 2r

σ2 −1

1 = −2r(K − x1)

x1σ2

を得る。これを整理して x1σ
2 = 2rK − 2rx1 となり、よって x1(σ

2 + 2r) = 2rK を得る。以上より、L∗ の
定義から

x1 =
2r

2r + σ2
K = L∗

となり、また
v(x) = Ax− 2r

σ2 = (K − x1)x
2r
σ2

1 x− 2r
σ2 = (K − L∗)

(
x

L∗

)− 2r
σ2

となる。以上で全て示された。

練習問題 8.4. (1)

(2)

(3)

(4)

(5)

解答. (1)。単純計算。

f ′(x) = − 2r

σ2
Ax− 2r

σ2 −1 +B,

f ′′(x) = − 2r

σ2

(
− 2r

σ2
− 1

)
Ax− 2r

σ2 −2,
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であるから、

rf − rxf ′ − 1

2
σ2x2f ′′

= r
(
Ax− 2r

σ2 +Bx
)
− rx

(
− 2r

σ2
Ax− 2r

σ2 −1 +B

)
− 1

2
σ2x2 2r

σ2

(
2r

σ2
+ 1

)
Ax− 2r

σ2 −2

= rAx− 2r
σ2 + rBx+

2r2

σ2
Ax− 2r

σ2 − rBx− r

(
2r

σ2
+ 1

)
Ax− 2r

σ2

= 0

となる。
(2)。不定元 A,B に関する二元連立一次方程式

AL− 2r
σ2 +BL = K − L,

− 2r

σ2
AL− 2r

σ2 −1 +B = −1,

は解を持つ。実際に解くと、二つ目の式に Lをかけて一つ目から引くことで(
1 +

2r

σ2

)
AL− 2r

σ2 = K

となるので Aが求まり、二つ目の式に代入すると B も求まる。具体的には、

A =
σ2

2r + σ2
KL

2r
σ2 ,

B =
2r

2r + σ2
KL−1 − 1,

となる。
(3)。まず g(x) = f(x) + xとおく。g(L) = f(L) + L = K である。所望の結果を得るには、次の二つを示
せば良い：

(1) L ≤ x ≤ K に対して g(x) ≥ K である。
(2) K ≤ xに対して f(x) ≥ 0である。

(1)が成立するには L ≤ x ≤ K において g′(x) ≥ 0であることが十分である。微分を計算すると、(2)の計算
結果より A,B > 0であるから、

g′(x) = f ′(x) + 1

= Ax− 2r
σ2 −1 +B + 1

> 0

となる。以上で (1)が成立することがわかった。(2)も同様に、A,B > 0であるから、

f(x) = Ax− 2r
σ2 +Bx > 0

となる。
(4)。v の定義から明らか。
(5)。これは練習問題 8.3 (6)で既に示していることである。
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練習問題 8.5. (1)

(2)

(3)

(4)

解答. (1)。x = S(0)とおく。x ≤ Lであれば直ちに権利行使するので、このときのペイオフは (K − x)+ で
ある。x ≤ L < K なので (K − x)+ = K − xであり、よって vL(x) = K − x, (x ≤ L)である。x > Lにお
ける vL(x)の挙動を調べる。
S に関する確率微分方程式 (8.8.9)を解けば

S(t) = x exp

((
r − a− 1

2
σ2

)
t+ σW̃ (t)

)
となる。よって

S(t) ≤ L,

⇐⇒
(
r − a− 1

2σ
2
)
t+ σW̃ (t) ≤ log

(
L
x

)
,

⇐⇒ log
(
x
L

)
≤ −

(
r − a− 1

2σ
2
)
t− σW̃ (t),

⇐⇒ 1
σ log

(
x
L

)
≤ − r−a− 1

2σ
2

σ t− W̃ (t),

である。ここで

µ :
def
=

−r + a+ 1
2σ

2

σ
,

m :
def
=

1

σ
log
( x
L

)
,

τm :
def
= min{t ≥ 0 | −W̃ (t) ≥ m},

γ :
def
=

1

σ2

(
r − a− 1

2
σ2

)
+

1

σ

√
1

σ2

(
r − a− 1

2
σ2

)2

+ 2r

=
1

σ

(
−µ+

√
µ2 + 2r

)
,

とおく。τm はブラウン運動 −W̃ (t) (W̃ (t)はブラウン運動なので −W̃ (t)もブラウン運動となる) の mへの
到達時刻であり、γ は本書内で定義されているものと同じである。x > L, σ > 0であるから、m > 0となっ
ていることに注意する。
このオプションのペイオフはK − S(τm) = K −Lであることに注意。利率 rなので、割引かれたペイオフ
は (K − L)e−rτm である。従ってこのペイオフのリスク中立測度における期待値は、定理 8.3.2を用いて計算
すれば、

vL(x) :
def
= Ẽ

[
(K − L)e−rτm

]
= (K − L)Ẽ

[
e−rτm

]
= (K − L) exp

(
−m

(
−µ+

√
µ2 + 2r

))
= (K − L) exp (−mσλ)

= (K − L)
( x
L

)−λ
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となる。
(2)。vL(x)を Lの関数として微分すれば

d

dL
vL(x) =

{
0 , (x ≤ L),

x−λLλ−1 (λK − (λ+ 1)L) , (x ≥ L),

であるから、L に関する関数として vL(x) は 0 ≤ L ≤ λ
λ+1K において増加し、L = λ

λ+1K で極値をとり、
λ

λ+1K < L < xで減少して、x ≤ Lで一定の値 K − xをとる。従って Lの関数としての vL(x)の最大値は
L = λ

λ+1K の時に達成される。以上より L∗ = λ
λ+1K である。

(3)。まずはじめに、λは二次方程式

λ2 +
2

σ2

(
−r + a+

1

2
σ2

)
λ− 2r

σ2
= 0

の解の一つであることに注意しておく。
e−rtvL∗(S(t))の微分を計算すると、dS = (r − a)Sdt+ σSdW̃ , (dS)2 = σ2S2dtであるから、

d
(
e−rtvL∗(S)

)
= e−rt (d(vL∗(S))− rvL∗(S)dt)

= e−rt

(
−rvL∗(S)dt+ v′L∗

(S)dS +
1

2
v′′L∗

(S)(dS)2
)

= e−rt

(
−rvL∗(S) + (r − a)Sv′L∗

(S) +
1

2
σ2S2v′′L∗

(S)

)
dt+ (何らか)dW̃

である。ここで (何らか)dW̃ の項の積分は P̃のもとでマルチンゲールであるから、dt項の係数が正でなけれ
ば e−rtvL∗(S(t))の優マルチンゲール性がわかる。S(t) < L∗ であれば v′L∗

(S(t)) = −1, v′′L∗
(S(t)) = 0であ

るから、

− rvL∗(S) + (r − a)Sv′L∗
(S) +

1

2
σ2S2v′′L∗

(S)

= −r(K − S(t))− (r − a)S(t)

= −rK + aS(t)

< −rK + aL∗

= −rK + a
λ

λ+ 1
K

< K (a− r)

< 0

となる。S(t) > L∗ であれば、

v′L∗
(S(t)) = −λ

K − L∗

L∗

(
S(t)

L∗

)−λ−1

,

v′′L∗
(S(t)) = λ(λ+ 1)

K − L∗

L2
∗

(
S(t)

L∗

)−λ−2

,
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となるので、

− rvL∗(S) + (r − a)Sv′L∗
(S) +

1

2
σ2S2v′′L∗

(S)

= −r(K − L∗)− (r − a)S(t)λ
K − L∗

L∗

(
S(t)

L∗

)−λ−1

+
1

2
σ2S2λ(λ+ 1)

K − L∗

L2
∗

(
S(t)

L∗

)−λ−2

= (K − L∗)

(
S(t)

L∗

)−λ(
−r − λ(r − a) +

1

2
σ2λ(λ+ 1)

)
=

1

2
(K − L∗)σ

2

(
S(t)

L∗

)−λ(
λ2 +

2

σ2

(
−r + a+

1

2
σ2

)
λ− 2r

σ2

)
= 0

となる。S(t) = L∗ となる確率は 0であるからこの場合は無視して良い。以上よりどの場合においても dtの
係数は正でないことがわかった。従って e−rtvL∗(S(t))は優マルチンゲールである。また S(0) > L∗ から開
始する確率過程 e−rtvL∗(S(t))が S(t) = L∗ となる時刻で停止すれば、S(t) > L∗ において dtの係数が 0で
あることからこの過程はマルチンゲールとなる。以上で全て示された。
(4)。系 8.3.6 の証明を真似る。τL∗ を S(t) が L∗ に到達する時刻を表す確率変数とする。つまりこれは

L = L∗ のときの τm である。関数 vL∗ の定義と T がすべての到達時刻の集合であることから、

vL∗(x) = (K − L∗)Ẽ
[
e−rτL∗

]
= (K − S(τL∗)) Ẽ

[
e−rτL∗

]
= Ẽ

[
(K − S(τL∗)) e

−rτL∗
]

≤ max
τ∈T

Ẽ
[
(K − S(τ)) e−rτ

]
がわかる。逆向きの不等号を証明する。vL∗(x)の優マルチンゲール性と任意抽出定理 (定理 8.2.4) より、任
意の停止時刻 τ に対して確率過程 e−r(t∧τ)vL∗ (S(t ∧ τ)) は優マルチンゲールであり、従って任意の時刻 tに
対して

vL∗(x) = vL∗(S(0))

= e−r(0∧τ)vL∗(S(0 ∧ τ))

≥ Ẽ
[
e−r(t∧τ)vL∗ (S(t ∧ τ))

]
がわかる。ここで t → ∞とすることで

vL∗(x) ≥ Ẽ
[
e−rτvL∗ (S(τ))

]
を得る。停止時刻 τ は任意だったので、以上より

vL∗(x) ≥ max
τ∈T

Ẽ
[
e−rτvL∗ (S(τ))

]
を得る。これは所望の不等式である。

練習問題 8.6.

解答. まず関数 (x − K)+ は凸関数であることに注意する (図 8.5.1 を見る)。よって補題 8.5.1 より確率過
程 e−rt (S(t)−K)

+ は劣マルチンゲールである。従って定理 8.8.1 より、任意の時刻 t と任意の停止時刻
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τ ∈ T0,T に対して τ の取りうる値が [0, T ]内であるかまたは∞であることから、

Ẽ
[
e−rT (S(T )−K)

+
]
≥ Ẽ

[
e−r(T∧τ) (S(T ∧ τ)−K)

+
]

≥ Ẽ
[
e−rτ (S(τ)−K)

+
]

となる。停止時刻 τ は任意だったので

Ẽ
[
e−rT (S(T )−K)

+
]
≥ max

τ∈T0,T

Ẽ
[
e−rτ (S(τ)−K)

+
]

を得る。逆向きの不等式を証明する。確率変数 τ ′ として一定値 τ ′ = T となるものを考えれば τ ′ ∈ T0,T であ
るから

Ẽ
[
e−rT (S(T )−K)

+
]
= Ẽ

[
e−rτ ′

(S(τ ′)−K)
+
]
≤ max

τ∈T0,T

Ẽ
[
e−rτ (S(τ)−K)

+
]

となる。以上で示された。

練習問題 8.7.

解答. まず任意の x ≥ 0に対して h(x) ≥ f(x), g(x)であることに注意する。任意の 0 ≤ x1 ≤ x2 に対して

h(x1) ≥ f(x1), g(x1), h(x2) ≥ f(x2), g(x2)

を得て、従って任意の a, b > 0, a+ b = 1で線形に足し合わせれば

ah(x1) + bh(x2) ≥ af(x1) + bf(x2), ag(x1) + bg(x2)

を得る。右辺のうち大きい方を選択しても不等式は成立するので、

ah(x1) + bh(x2) ≥ max{af(x1) + bf(x2), ag(x1) + bg(x2)}

となる。一方、f, g は凸なので

af(x1) + bf(x2) ≥ f(ax1 + bx2), ag(x1) + bg(x2) ≥ g(ax1 + bx2),

となり、両辺のうち大きい方をとることで

max{af(x1) + bf(x2), ag(x1) + bg(x2)} ≥ max{f(ax1 + bx2), g(ax1 + bx2)}

を得る。ここで hの定義より右辺は h(ax1 + bx2)に他ならない。以上より

ah(x1) + bh(x2) ≥ max{af(x1) + bf(x2), ag(x1) + bg(x2)}
≥ max{f(ax1 + bx2), g(ax1 + bx2)}
= h(ax1 + bx2)

が得られ、これは所望の結果である。
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9 基準財の変更
練習問題 9.1. (1)

(2)

解答. (1)。与えられた filtrationを F(t)とおく。まず定義から

dP(M2)

dP
= M2(T )

である。つまりM2(T )は P(M2) の Pに対するラドン-ニコディム微分である。またM2(t)はマルチンゲール
であるから、M2 はラドン-ニコディム微分過程である。従って補題 5.2.2より、0 ≤ s ≤ t ≤ T に対して、

E(M2)

[
M1(t)

M2(t)

∣∣∣∣F(s)

]
=

1

M2(s)
E
[
M1(t)

M2(t)
·M2(t)

∣∣∣∣F(s)

]
=

1

M2(s)
E [M1(t)|F(s)]

=
M1(s)

M2(s)

となる。最後の等号はM1 が Pに関してマルチンゲールであることによる。以上よりM1(t)/M2(t)は P(M2)

に関してマルチンゲールとなる。
(2)。

M1(t) :
def
=

D(t)

N(0)
S(t),

M2(t) :
def
=

D(t)

N(0)
N(t),

と定義すれば、M2(0) = 1,M2(t) > 0であり、またD(t)S(t), D(t)N(t)が P̃のもとでマルチンゲールである
ことから、M1(t),M2(t)も P̃のもとでマルチンゲールである。従ってこれらは注意 9.2.5の仮定を満たす。ま
た、M1(t)/M2(t) = S(t)/N(t) = S(N)(t)となる。よって (1)より S(N)(t)は P̃(N) のもとでマルチンゲール
である。以上で示された。

練習問題 9.2. (1)

(2)

(3)

解答. (1)。普通に計算する。
dN = νNdW̃ + rNdt

110



なので、(dN)2 = ν2N2dtであり、

d

(
1

N

)
= − 1

N2
dN +

1

N3
(dN)2

= − 1

N

(
νdW̃ + rt

)
+

ν2

N
dt

= − ν

N
dW̃ +

1

N
(ν2 − r)dt

= − ν

N
dŴ − r

N
dt

となる。
(2)。普通に計算すると、dM = rMdtであるから、

d

(
M

N

)
=

1

N
dM +Md

(
1

N

)
+ dMd

(
1

N

)
=

1

N
rMdt+M

(
− ν

N
dŴ − r

N
dt
)

= − ν

N
MdŴ

= −νM̂dŴ

となる。
(3)。まず示すべき等式の左辺を計算する。次に注意する：

• S
M , N

M , X
M はどれも P̃についてマルチンゲールである。

これは S,N については既に何度も使っている事実であり、X についても本文中で示されているが、普通に
微分を計算しても証明できる (この事実は今までに何度も用いている)。よってM1(t) =

X(t)
N(0)M(t) ,M2(t) =

N(t)
N(0)M(t) に対して練習問題 9.1 (1)を用いれば、X̂ が P̂についてマルチンゲールであることがわかる。以上
より

dX̂ = Y dŴ

と置くことができる。次に d
(
NX̂

)
= dX を二通りの方法で計算する。dN = νNdŴ + (何らか)dtである

から、

d
(
NX̂

)
= NdX̂ + X̂dN + dNdX̂

= NY dŴ + νNX̂dŴ + νNY
(
dŴ

)2
+ (何らか)dt

=
(
NY + νNX̂

)
dŴ + (何らか)dt

= (NY + νX) dŴ + (何らか)dt

となる。一方、式 (9.7.1)を用いれば、dM = rMdt, dS = σSdŴ + (何らか)dtであるから、

dX = ∆dS + ΓdM

= σS∆dŴ + (何らか)dt
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となって、dŴ の係数を比較することで
NY + νX = σS∆

を得る。以上より
Y =

σS∆− νX

N

となる。
次に示すべき等式の右辺を計算する。dŜ = (σ − ν)ŜdŴ と (2)より、

∆dŜ + ΓdM̂ =
(
(σ − ν)Ŝ∆− νM̂Γ

)
dŴ

=
1

N
(σS∆− νS∆− νMΓ) dŴ

=
1

N
(σS∆− νX) dŴ

= Y dŴ

= dX̂

となる。以上で示された。

練習問題 9.3. (1)

(2)

(3)

解答. (1)。普通に計算する。d
(

1
N

)
= − 1

N2 dN + (何らか)dt であることと、dSdN = (何らか)dtであること
から、

d
(
S(N)

)
S(N)

=
1

S(N)

(
1

N
dS + Sd

(
1

N

)
+ dSd

(
1

N

))
=

1

S
dS − 1

N
dN + (何らか)dt

= σdW̃1 − νdW̃3 + (何らか)dt

となる。定数 γ 6= 0に対して
W̃4 :

def
=

1

γ

(
σW̃1 − νW̃3

)
はマルチンゲールであるから、これがブラウン運動となるためには (Leviの定理より) 二次変分が tであれば
良い。そのような γ を求める。 (

dW̃4

)2
=

1

γ2

(
σdW̃1 − νdW̃3

)2
=

1

γ2

(
σ2 + ν2 − 2ρσν

)
dt

であるから、γ =
√
σ2 + ν2 − 2ρσν に対して W̃4 は P̃のもとでのブラウン運動となる。以上で示された。

(2)。dN = rNdt+ νNdW̃3 であるから、このような W̃2 を探す問題は

ρdW̃1 +
√
1− ρ2dW̃2 = dW̃3
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となるブラウン運動 W̃2 を探す問題となる。

dW̃2 =
1√

1− ρ2

(
ρdW̃1 + dW̃3

)
と書きなおして積分すれば、このような W̃2 は

W̃2 =
ρ√

1− ρ2
W̃1 +

1√
1− ρ2

W̃3

とすることで得られることがわかる。
(3)。二つの独立なブラウン運動 W̃1, W̃2 について定理 9.2.2を用いる。S の方のボラティリティ・ベクトル
は (σ, 0)であり、N の方のボラティリティ・ベクトルは (νρ, ν

√
1− ρ2)である。定理 9.2.2より、S(N) のボ

ラティリティ・ベクトル (v1, v2)はその差であるから、

(v1, v2) = (σ − νρ,−ν
√
1− ρ2)

となる。また
v21 + v22 = (σ − νρ)2 + ν2(1− ρ2) = σ2 − 2νρ+ ν2

もわかる。

練習問題 9.4.

解答. 次に注意：

dW̃ f
1 = dW̃1 − σ2ρdu,

dW̃ f
3 = dW̃3 − σ2ρdu,

dW̃1dW̃3 = ρdu,

dS = S(Rdu+ σ1dW̃1),

d
(
MfQ

)
= MfQ(Rdu+ σ2dW̃3),

Df = (Mf )−1,

d(M−1) = d
(
e−

∫ t
0
R(u)du

)
= −RM−1du.

これらはいずれも定義そのものであったり、本文中に書いてあることである。T = MfQとおく。示さなけれ
ばならないのは次の二つの等式である：

d

(
M

T

)
= −M

T
σ2dW̃

f
3 ,

d

(
S

T

)
=

S

T

(
σ1dW̃

f
1 − σ2dW̃

f
3

)
.

まず一つ目の等式から証明する。X = T
M とおく。示したいことは

d

(
1

X

)
= − 1

X
σ2dW̃

f
3
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である。d
(
M−1

)
= −RM−1duであるから、

dX = M−1dT −RTM−1du

= M−1(dT −RTdu)

= M−1Tσ2dW̃3

= σ2XdW̃3

となる。よって (dX)2 = σ2
2X

2dtとなり、

d

(
1

X

)
= − 1

X2
dX +

1

X3
(dX)2

= − 1

X2
σ2XdW̃3 +

1

X3
σ2
2X

2dt

= −σ2

X

(
dW̃3 − σ2dt

)
= −σ2

X
dW̃ f

3

となる。これは所望の結果である。
二つ目の等式を証明する。Y = S

M と置く。計算したいのは d
(
Y
X

)である。X のときと同様に

dY = M−1dS −RSM−1du

= M−1(dS −RSdu)

= M−1Sσ1dW̃1

= σ1Y dW̃1

となる。dW̃1dW̃
f
3 = dW̃1(dW̃3 − σ2du) = dW̃1dW̃3 = ρdu であるから、よって

d

(
Y

X

)
= Y d

(
1

X

)
+

1

X
dY + d

(
1

X

)
dY

= −Y
σ2

X
dW̃ f

3 +
1

X
σ1Y dW̃1 +

σ2

X
dW̃ f

3 σ1Y dW̃1

=
Y

X

(
σ1dW̃1 − σ2dW̃

f
3

)
+

σ1σ2Y

X
dW̃1dW̃

f
3

=
Y

X

(
σ1dW̃

f
1 − σ2dW̃

f
3 + σ1σ2ρdu

)
+

σ1σ2Y

X
ρdu

=
Y

X

(
σ1dW̃

f
1 − σ2dW̃

f
3

)
となる。これは所望の計算結果である。以上で全て示された。

練習問題 9.5. (1)

(2)

(3)

(4)

解答. (1)。確率微分方程式 (9.3.1)を解く問題。まず式 (9.3.1)より

(dS)2 = σ2
1S

2
(
dW̃1

)2
= σ2

1S
2du
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であることに注意。金利の過程 Rは定数 r なので、d (logS)を計算すると、

d (logS) =
1

S
dS − 1

2S2
(dS)2

=
1

S
S
(
rdu+ σ1dW̃1

)
− 1

2S2
σ2
1S

2du

= σ1dW̃1 +

(
r − 1

2
σ2
1

)
du

となるので、これを ∫ t

0
で積分すれば、

log
S(t)

S(0)
= σ1W̃1(t) +

∫ t

0

(
r − 1

2
σ2
1

)
du = σ1W̃1(t) +

(
r − 1

2
σ2
1

)
t

となる。整理すれば
S(t) = S(0) exp

(
σ1W̃1(t) +

(
r − 1

2
σ2
1

)
t

)
となることがわかる。
(2)。σ1 を σ2 でおきかえ、W̃1 を W̃3 でおきかえ、rを r− rf で置き換えて (1)と全く同様の計算をするこ
とで

Q(t) = Q(0) exp

(
σ2W̃3(t) +

(
r − rf − 1

2
σ2
2

)
t

)
となることがわかるが、ここで W̃3 = ρW̃1 +

√
1− ρ2W̃2 を代入すれば所望の式を得る。

(3)。(1) と (2) で得られた結果の両辺を割り、さらに W̃4 や σ4, a などで置き換えれば所望の結果を得る。
W̃4 がブラウン運動であることは二次変分を計算すればわかる。
(4)。X = S/Qとおけば、これは

dX = (r − a)Xdt+ σ4XdW̃4

を満たす。クウォント・コールのペイオフが (X(T )−K)+ であることから、求めるクウォント・コールの時
刻 tでの価格は、原資産価格が X(t)で表されるヨーロピアン・コール・オプションの時刻 tでの価格と等し
い。従って初期値をX(0) = xとおけば、この価格は式 (5.5.12)によって求められる。これは求める結果であ
る。

練習問題 9.6. (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

解答. (1)。式を眺めるだけ。
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(2)。式 (9.4.10)を眺めて (1)の結果を代入すると

d+ + d− =
2

σ
√
T − t

log
ForS(t, T )

K
=

2

d+ − d−
log

ForS(t, T )

K

となるので両辺に d+ − d− をかければ所望の結果を得る。
(3)。(2)の結果の両辺を eの肩に乗せて整理するだけ。
(4)。式 (9.4.10)をそのまま微分する。まず d

(
log ForS(t,T )

K

)
を計算すると、

d

(
log

ForS(t, T )

K

)
= d (log ForS(t, T )− logK)

= d (log ForS(t, T ))

=
1

ForS(t, T )
dForS(t, T )−

1

ForS(t, T )2
(dForS(t, T ))

2

⋆
= σdW̃T − σ2

(
W̃T

)2
= σdW̃T − σ2dt

となる。ここで⋆の箇所は式 (9.4.8)を用いた。従って、

dd+(t)

= d

(
1

σ
√
T − t

(
log

ForS(t, T )

K
+

1

2
σ2(T − t)

))
= log

ForS(t, T )

K
· d
(

1

σ
√
T − t

)
+

1

σ
√
T − t

d

(
log

ForS(t, T )

K

)
+

1

2
d
(
σ
√
T − t

)
= log

ForS(t, T )

K
· −1

2σ2

(
−(T − t)−3/2

)
dt

+
1

σ
√
T − t

σdW̃T − 1

σ
√
T − t

σ2dt+
1

2
σ

(
−1

2
(T − t)−1/2

)
dt

=
1

2σ2(T − t)3/2
log

ForS(t, T )

K
dt+

1√
T − t

dW̃T − 3

4
√
T − t

σdt

となる。これは所望の結果である。
(5)。(1)の結果の両辺に dをつけるだけ。
(6)。二乗すると dtの係数は消えて dW̃T の係数だけ二乗になって生き残る。このことを念頭におけば結果
は (4)と (5)より明らかである。
(7)。N ′(x) = 1√

2π
e−x2/2, N ′′(x) = − x√

2π
e−x2/2 と (6)の結果である

(dd+)
2 =

dt

T − t

に注意すれば、

d (N(d+)) = N ′(d+)dd+ +
1

2
N ′′(d+)(dd+)

2

=
1√
2π

e−d2
+/2dd+ − 1

2

d+√
2π

e−d2
+/2(dd+)

2

=
1√
2π

e−d2
+/2dd+ − d+

2
√
2π

e−d2
+/2 dt

T − t
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=
1√
2π

e−d2
+/2dd+ − d+

2(T − t)
√
2π

e−d2
+/2dt

となる。これは所望の結果である。
(8)。計算すると、

d (N(d−)) = N ′(d−)dd− +
1

2
N ′′(d−)(dd−)

2

=
1√
2π

e−d2
−/2dd− − 1

2

d−√
2π

e−d2
−/2(dd−)

2

⋆
=

1√
2π

e−d2
−/2

(
dd+ +

σ

2
√
T − t

dt

)
− d−

2
√
2π

e−d2
−/2 dt

T − t

♠
=

1√
2π

e−d2
−/2dd+ +

σ

2
√
2π(T − t)

e−d2
−/2dt− d+ − σ

√
T − t

2(T − t)
√
2π

e−d2
−/2dt

=
1√
2π

e−d2
−/2dd+ +

σ√
2π(T − t)

e−d2
−/2dt− d+

2(T − t)
√
2π

e−d2
−/2dt

となる。ただし⋆の箇所は (5)と (6)の結果を用い、♠の箇所は (1)の結果を用いた。これは所望の結果で
ある。
(9)。計算すると、

d (ForS(t, T )) d (N(d+))
⋆
= σForS(t, T )dW̃

T

(
1√
2π

e−d2
+/2dd+ − d+

2(T − t)
√
2π

e−d2
+/2dt

)
♠
= σForS(t, T )

(
1√
2π

e−d2
+/2 1

T − t

)(
dW̃T

)2
=

σForS(t, T )√
2π(T − t)

e−d2
+/2dt

となる。ただし⋆の箇所は式 (9.4.10)と (7)の結果を用い、♠の箇所は等式 dtdt = 0, dtdW̃T = 0と (4)の
結果を用いた。
(10)。今までの結果をあわせると、
ForS(t, T )dN(d+) + d (ForS(t, T )) dN(d+)−KdN(d−)

⋆
= ForS(t, T )

(
1√
2π

e−d2
+/2dd+ − d+

2(T − t)
√
2π

e−d2
+/2dt

)
+

σForS(t, T )√
2π(T − t)

e−d2
+/2dt

−K

(
1√
2π

e−d2
−/2dd+ +

σ√
2π(T − t)

e−d2
−/2dt− d+

2(T − t)
√
2π

e−d2
−/2dt

)
♠
=

1√
2π

ForS(t, T )e
−d2

+/2dd+ − d+

2(T − t)
√
2π

ForS(t, T )e
−d2

+/2dt+
σForS(t, T )√
2π(T − t)

e−d2
+/2dt

− 1√
2π

ForS(t, T )e
−d2

+/2dd+ − σ√
2π(T − t)

ForS(t, T )e
−d2

+/2dt+
d+

2(T − t)
√
2π

ForS(t, T )e
−d2

+/2dt

= 0

となる。ただし⋆の箇所は第一項に (7)の結果を使って第二項に (9)の結果を使って第三項に (8)の結果を
使った。また ♠の箇所は (3)の結果を使い、最後は第一項と第四項、第二項と第六項、第三項と第五項が相殺
する。以上で示された。
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10 期間構造モデル
練習問題 10.1. (1)

(2)

(3)

解答. (1)。これは伊藤積分の期待値が 0であることを念頭において式 (10.2.43)-(10.2.46) を眺めることでわ
かる。
(2)。一つ目は伊藤積分の等長性を用いることで

ẼI21 (t) =
∫ t

0

e2λ1udu

=
1

2λ1

(
e2λ1t − 1

)
となる。
二つ目を計算する。伊藤積分の等長性より、

Ẽ [I1(t)I2(t)] =
1

2

(
Ẽ
[
(I1(t) + I2(t))

2
]
− ẼI1(t)− ẼI2(t)

)
=

1

2
Ẽ

[(∫ t

0

(
eλ1u + eλ2u

)
dW̃1(u)

)2
]

− 1

2
Ẽ

[(∫ t

0

eλ1udW̃1(u)

)2
]
− 1

2
Ẽ

[(∫ t

0

eλ2udW̃1(u)

)2
]

=
1

2

∫ t

0

(
eλ1u + eλ2u

)2
du− 1

2

∫ t

0

e2λ1udu− 1

2

∫ t

0

e2λ2udu

=

∫ t

0

e(λ1+λ2)udu

=
1

λ1 + λ2

(
e(λ1+λ2)t − 1

)
となる。
三つ目を計算する。dI1 = eλ1udW̃1, dI3 = eλ2udW̃2 であるから、

d (I1I3) = I1dI3 + I3dI1 + dI1dI3

= eλ2uI1dW̃2 + eλ1uI3dW̃1 + eλ1ueλ2udW̃1dW̃2

= eλ2uI1dW̃2 + eλ1uI3dW̃1

となる。これを ∫ t

0
で積分して平均をとれば、右辺は伊藤積分の和なので平均 0であり、従って Ẽ[I1(t)I3(t)] =

0がわかる。
四つ目を計算する t。dI4 = ueλ1udW̃1 であるから、

d(I1I4) = I1dI4 + I4dI1 + dI1dI4

= ueλ1uI1dW̃1 + eλ1uI4dW̃1 + ueλ1ueλ1udW̃1dW̃1

=
(
ueλ1uI1 + eλ1uI4

)
dW̃1 + ue2λ1udu
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となる。これを ∫ t

0
で積分して平均を取れば、伊藤積分の部分は消えて、

Ẽ[I1(t)I4(t)] =
∫ t

0

ue2λ1udu

=

[
u

1

2λ1
e2λ1u

]t
0

−
∫ t

0

1

2λ1
e2λ1udu

= t
1

2λ1
e2λ1t − 1

4λ2
1

(
e2λ1t − 1

)
となる。
五つ目を計算する。

d(I24 ) = 2I4dI4 +
1

2
2dI4dI4

= 2ueλ1uI4dW̃1 + u2e2λ1udu

となるので、

Ẽ[I24 (t)] =
∫ t

0

u2e2λ1udu

=

[
u2 1

2λ1
e2λ1u

]t
0

−
∫ t

0

2u
1

2λ1
e2λ1udu

=
1

2λ1
t2e2λ1t − 1

λ1

[
u

1

2λ1
e2λ1u

]t
0

+
1

λ1

∫ t

0

1

2λ1
e2λ1udu

=
1

2λ1
t2e2λ1t − 1

2λ2
1

te2λ1t +
1

2λ2
1

1

2λ1

(
e2λ1u − 1

)
=

1

2λ1
t2e2λ1t − 1

2λ2
1

te2λ1t +
1

4λ3
1

(
e2λ1u − 1

)
となる。
(3)。(ヒントに従った別解答の方が見る価値あり)。

d
(
eλ1uW̃1

)
= eλ1udW̃1 + λ1e

λ1uW̃1du

であるから
I1(s) = eλ1sW̃1(s)− λ1

∫ s

0

eλ1uW̃1(u)du

である。同じく
I2(t) = eλ2tW̃1(t)− λ2

∫ t

0

eλ2uW̃1(u)du

である。従って

I1(s)I2(t) =

(
eλ1sW̃1(s)− λ1

∫ s

0

eλ1uW̃1(u)du

)(
eλ2tW̃1(t)− λ2

∫ t

0

eλ2uW̃1(u)du

)
= eλ1s+λ2tW̃1(s)W̃1(t)

− λ1e
λ2t

∫ s

0

eλ1uW̃1(t)W̃1(u)du

− λ2e
λ1s

∫ t

0

eλ2uW̃1(s)W̃1(u)du

+ λ1λ2

∫ s

0

∫ t

0

eλ1u1eλ2u2W̃1(u1)W̃1(u2)du2du1
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となる。最後の式の各項についてそれぞれ期待値を計算する。第一項は s < tであることから

Ẽ[eλ1s+λ2tW̃1(s)W̃1(t)] = eλ1s+λ2tẼ[W̃1(s)W̃1(t)] = seλ1s+λ2t

となる。第二項は

Ẽ
[
λ1e

λ2t

∫ s

0

eλ1uW̃1(t)W̃1(u)du

]
= λ1e

λ2t

∫ s

0

eλ1uẼ
[
W̃1(t)W̃1(u)

]
du

⋆
= λ1e

λ2t

∫ s

0

ueλ1udu

= λ1e
λ2t

([
u
1

λ1
eλ1u

]s
0

−
∫ s

0

1

λ1
eλ1udu

)
= λ1e

λ2t

(
1

λ1
seλ1s − 1

λ2
1

(
eλ1s − 1

))
= seλ1s+λ2t − 1

λ1
eλ2t

(
eλ1s − 1

)
= seλ1s+λ2t − 1

λ1
eλ1s+λ2t +

1

λ1
eλ2t

となる。ただし⋆の項は 0 ≤ u ≤ s < tであることによる。第三項は

Ẽ
[
λ2e

λ1s

∫ t

0

eλ2uW̃1(s)W̃1(u)du

]
= λ2e

λ1s

∫ t

0

eλ2uẼ
[
W̃1(s)W̃1(u)

]
du

= λ2e
λ1s

∫ t

0

eλ2u(s ∧ u)du

= λ2e
λ1s

(∫ s

0

eλ2uudu+ s

∫ t

s

eλ2udu

)
= λ2e

λ1s

(
1

λ2
seλ2s − 1

λ2
2

(
eλ2s − 1

)
+ s

1

λ2

(
eλ2t − eλ2s

))
= λ2e

λ1s

(
− 1

λ2
2

(
eλ2s − 1

)
+ s

1

λ2
eλ2t

)
= seλ1s+λ2t − 1

λ2
e(λ1+λ2)s +

1

λ2
eλ1s

となる。第四項は

Ẽ
[
λ1λ2

∫ s

0

∫ t

0

eλ1u1eλ2u2W̃1(u1)W̃1(u2)du2du1

]
= λ1λ2

∫ s

0

∫ t

0

eλ1u1eλ2u2 Ẽ
[
W̃1(u1)W̃1(u2)

]
du2du1

= λ1λ2

∫ s

0

∫ t

0

eλ1u1eλ2u2(u1 ∧ u2)du2du1

= λ1λ2

∫ s

0

eλ1u1

(∫ u1

0

eλ2u2u2du2 +

∫ t

u1

eλ2u2u1du2

)
du1

= λ1λ2

∫ s

0

eλ1u1

(
1

λ2
u1e

λ2u1 − 1

λ2
2

(
eλ2u1 − 1

)
+ u1

1

λ2

(
eλ2t − eλ2u1

))
du1
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= λ1λ2

∫ s

0

eλ1u

(
− 1

λ2
2

(
eλ2u − 1

)
+ u

1

λ2
eλ2t

)
du

= −λ1

λ2

∫ s

0

e(λ1+λ2)udu+
λ1

λ2

∫ s

0

eλ1udu+ λ1e
λ2t

∫ s

0

ueλ1udu

= −λ1

λ2

1

λ1 + λ2

(
e(λ1+λ2)s − 1

)
+

λ1

λ2

1

λ1

(
eλ1s − 1

)
+ λ1e

λ2t

(
1

λ1
seλ1s − 1

λ2
1

(
eλ1s − 1

))
= − λ1

λ2(λ1 + λ2)
e(λ1+λ2)s +

λ1

λ2(λ1 + λ2)

+
1

λ2
eλ1s − 1

λ2

+ seλ1s+λ2t − 1

λ1
eλ1s+λ2t +

1

λ1
eλ2t

= − λ1

λ2(λ1 + λ2)
e(λ1+λ2)s +

1

λ2
eλ1s − 1

λ1 + λ2
+ seλ1s+λ2t − 1

λ1
eλ1s+λ2t +

1

λ1
eλ2t

となる。これらをあわせて、

Ẽ[I1(s)I2(t)]

= eλ1s+λ2tW̃1(s)W̃1(t)

− λ1e
λ2t

∫ s

0

eλ1uW̃1(t)W̃1(u)du

− λ2e
λ1s

∫ t

0

eλ2uW̃1(s)W̃1(u)du

+ λ1λ2

∫ s

0

∫ t

0

eλ1u1eλ2u2W̃1(u1)W̃1(u2)du2du1

= seλ1s+λ2t

−
(
seλ1s+λ2t − 1

λ1
eλ1s+λ2t +

1

λ1
eλ2t

)
−
(
seλ1s+λ2t − 1

λ2
e(λ1+λ2)s +

1

λ2
eλ1s

)
+

(
− λ1

λ2(λ1 + λ2)
e(λ1+λ2)s +

1

λ2
eλ1s − 1

λ1 + λ2
+ seλ1s+λ2t − 1

λ1
eλ1s+λ2t +

1

λ1
eλ2t

)
=

(
1

λ2
− λ1

λ2(λ1 + λ2)

)
e(λ1+λ2)s − 1

λ1 + λ2

=
1

λ1 + λ2
e(λ1+λ2)s − 1

λ1 + λ2

となる。
別解答。ヒントに従う。dJ1 = eλ1uIu≤sdW̃1, dI2 = eλ2udW̃1 であるから、

d(J1I2) = I2dJ1 + J1dI2 + dJ1dI2

= (何らか)dW̃1 + e(λ1+λ2)uIu≤s

(
dW̃1

)2
= (何らか)dW̃1 + e(λ1+λ2)uIu≤sdu
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となる。s < tなので J1(t) = I1(s)となり、また伊藤積分の期待値が 0であることから、従って

Ẽ[I1(s)I2(t)] = Ẽ[J1(t)I2(t)]

= Ẽ[
∫ t

0

e(λ1+λ2)uIu≤sdu]

=

∫ s

0

e(λ1+λ2)udu

=
1

λ1 + λ2
e(λ1+λ2)s

となる。

練習問題 10.2. (1)

(2)

解答. (1)。Y1, Y2 の満たす連立の確率微分方程式 (式 (10.2.59) と式 (10.2.60)) は不確定な部分が Y1, Y2 の
関数で与えられているので、その解 Y1, Y2 はマルコフ過程となる (cf. 多次元版の定理 6.3.1、つまり 6.6

節の文中に書いてあること)。従って、割引過程 D(t)f(t, Y1(t), Y2(t)) はマルチンゲールとなる。ここで
D(t) = e−

∫ t
0
R(u)du は割引過程で、R(t) = δ0 + δ1Y1(t)+ δ2Y2(t)は金利過程である。dD = −RDdtなので、

従って
d(Df) = Ddf − fdD = D(df −Rfdt)

の dtの係数は消える。df を計算する。

dY1 = (µ− λ1Y1)dt+
√

Y1dW̃1,

dY2 = −λ2Y2dt+ σ2,1

√
Y1dW̃1 +

√
α− βY1dW̃2,

であるから、

(dY1)
2 = Y1dt,

(dY2)
2 =

(
σ2
2,1Y1 + (α− βY1)

)
dt,

dY1dY2 = σ2,1Y1dt,

となり、従って fy1,y1 = f11, fy2,y2 = f22 とおけば、

df = ftdt+ f1dY1 + f2dY2 +
1

2
f11(dY1)

2 + f12dY1dY2 +
1

2
f22(dY2)

2

= ftdt+ (µ− λ1Y1)f1dt− λ2Y2f2dt+
1

2
Y1f11dt+ σ21Y1f12dt+

1

2
(σ2

21Y1 + α+ βY1)f22dt

+ (マルチンゲールの微分となる項)

となる。dtの係数が −Rfdt = −(δ0 + δ1Y1 + δ2Y2)fdtであるから、従って

ft + (µ− λ1y1)f1 − λ2y2f2 +
1

2
y1f11 + σ21y1f12 +

1

2
(σ2

21y1 + α+ βy1)f22 = −(δ0 + δ1y1 + δ2y2)f

となる。これが f の満たす偏微分方程式である。
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(2)。T − t = τ とおく。f(t, y1, y2) = exp (−y1C1(τ)− y2C2(τ)−A(τ)) であるから、

ft = f · d

dt
(−y1C1(τ)− y2C2(τ)−A(τ))

= (y1C
′
1(τ) + y2C

′
2(τ) +A′(τ)) f,

f1 = −C1(τ)f,

f2 = −C2(τ)f,

f11 = C2
1 (τ)f,

f12 = C1(τ)C2(τ)f,

f22 = C2
2 (τ)f,

となる。以降 τ を省略する。これらを (1)で得た方程式に代入して両辺を f(t, y1, y2)で割れば、

δ0 + δ1y1 + δ2y2

= y1C
′
1 + y2C

′
2 +A′ − (µ− λ1y1)C1 + λ2y2C2 +

1

2
y1C

2
1 + σ21y1C1C2 +

1

2
(σ2

21y1 + α+ βy1)C
2
2

を得る。定数項と y1, y2 の係数を比較すると、

定数項： δ0 = A′ − µC1 + αC2
2 ,

y1 の係数： δ1 = C ′
1 + λ1C1 +

1

2
C2

1 + σ21C1C2 +
1

2
(σ2

21 + β)C2
2 ,

y2 の係数： δ2 = C ′
2 + λ2C2,

を得る。これらを整理すれば所望の連立微分方程式を得る。

練習問題 10.3. (1)

(2)

(3)

(4)

解答. めんどくさいので、最後の問題以外は tでの微分をたんにダッシュで表す。
(1)。まず T を固定して f の満たす偏微分方程式を求める。D(t) = exp

(
−
∫ t

0
R(u)du

)
とおけば、

D(t)B(t, T ) = Ẽ[D(T ) | F(t)]

は反復条件付きの性質よりマルチンゲールである。従ってこれを微分すると dt の係数は消える。dD =

−RDdtであるから d(Df) = D(df − Rfdt)であり、従って微分 df における dtの係数は Rf となる。df を
計算する。

dY1 = −λ1Y1dt+ dW̃1,

dY2 = −(λ21Y1 + λ2Y2)dt+ dW̃2,

であるから、

(dY1)
2 = (dY2)

2 = dt,

dY1dY2 = 0,
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となる。fy1 = f1, fy2 = f2, fyi,yj = fij と略記する。以上より

df = ftdt+ f1dY1 + f2dY2 +
1

2
f11(dY1)

2 + f12dY1dY2 +
1

2
f22(dY2)

2

=

(
ft − λ1Y1f1 − (λ21Y1 + λ2Y2)f2 +

1

2
f11 +

1

2
f22

)
dt

+ (マルチンゲールの微分となる項)

となって、dtの係数が Rf であることから、

(δ0(t) + δ1y1 + δ2y2)f = ft − λ1y1f1 − (λ21y1 + λ2y2)f2 +
1

2
f11 +

1

2
f22

を得る。
この方程式に

f(t, T, y1, y2) = exp (−y1C1(t, T )− y2C2(t, T )−A(t, T ))

を代入する。

ft = −(y1C
′
1(t, T ) + y2C

′
2(t, T ) +A′(t, T ))f,

f1 = −C1(t, T )f,

f2 = −C2(t, T )f,

f11 = C2
1 (t, T )f,

f22 = C2
2 (t, T )f,

であるから、これらを代入して f で割れば、

δ0(t) + δ1y1 + δ2y2 = −(y1C
′
1 + y2C

′
2 +A′) + λ1y1C1 + (λ21y1 + λ2y2)C2 +

1

2
C2

1 +
1

2
C2

2

を得る。定数項と y1, y2 の係数を比較して

定数項： δ0(t) = −A′ +
1

2
C2

1 +
1

2
C2

2 ,

y1 の係数： δ1 = −C ′
1 + λ1C1 + λ21C2,

y2 の係数： δ2 = −C ′
2 + λ2C2,

を得る。
(2)。まず C2 から求める。C2 − δ2

λ2
は微分方程式

d

dt

(
C2 −

δ2
λ2

)
= C ′

2 = λ2C2 − δ2 = λ2

(
C2 −

δ2
λ2

)
を満たすので、

C2(t, T )−
δ2
λ2

= Ceλ2t

とおける。ただしここで C は定数である。週末条件 C(T, T ) = 0より

− δ2
λ2

= Ceλ2T
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がわかり、これより C = − δ2
λ2
e−λ2T がわかる。以上より

C2(t, T ) = − δ2
λ2

e−λ2(T−t) +
δ2
λ2

となる。次に C1 を求める。e−λ1tC1 を微分すると、

d

dt

(
e−λ1tC1(t, T )

)
= e−λ1t

d

dt
C1(t, T )− λ1e

−λ1tC1(t, T )

= e−λ1t

(
d

dt
C1(t, T )− λ1C1(t, T )

)
= e−λ1t (λ21C2(t, T )− δ1)

= e−λ1t

(
− δ2
λ2

λ21e
−λ2(T−t) +

δ2λ21

λ2
− δ1

)
となるので、これを ∫ t

T
で積分して週末条件 C1(T, T ) = 0を用いると、

e−λ1tC1(t, T )

= C1(T, T ) +

∫ t

T

(
e−λ1u

(
− δ2
λ2

λ21e
−λ2(T−u) +

δ2λ21

λ2
− δ1

))
du

= −δ2λ21

λ2
e−λ2T

∫ t

T

e(λ2−λ1)udu+

(
δ2λ21

λ2
− δ1

)∫ t

T

e−λ1udu

=

(
δ2λ21

λ2
− δ1

)
1

−λ1

(
e−λ1t − e−λ1T

)
+

δ2λ21

λ2
e−λ2T

∫ T

t

e(λ2−λ1)udu

=


(

δ2λ21

λ1λ2
− δ1

λ1

) (
e−λ1T − e−λ1t

)
+ δ2λ21

λ2
e−λ2T 1

λ2−λ1

(
e(λ2−λ1)T − e(λ2−λ1)t

)
, (λ1 6= λ2)(

δ2λ21

λ1λ2
− δ1

λ1

) (
e−λ1T − e−λ1t

)
+ δ2λ21

λ2
e−λ2T (T − t), (λ1 = λ2),

となる。両辺に eλ1t をかけると、

C1(t, T )

=


(

δ2λ21

λ1λ2
− δ1

λ1

) (
e−λ1(T−t) − 1

)
+ δ2λ21

λ2
e−λ2T 1

λ2−λ1

(
e(λ2−λ1)T+λ1t − e(λ2−λ1)t+λ1t

)
, (λ1 6= λ2)(

δ2λ21

λ1λ2
− δ1

λ1

) (
e−λ1(T−t) − 1

)
+ δ2λ21

λ2
e−λ2T+λ1t(T − t), (λ1 = λ2),

=


(

δ2λ21

λ1λ2
− δ1

λ1

) (
e−λ1(T−t) − 1

)
+ δ2λ21

λ2
e−λ2(T−t) 1

λ2−λ1

(
e(λ2−λ1)(T−t) − 1

)
, (λ1 6= λ2)(

δ2λ21

λ1λ2
− δ1

λ1

) (
e−λ1(T−t) − 1

)
+ δ2λ21

λ2
e−λ2T+λ1t(T − t), (λ1 = λ2),

となる。ただし最後の式の二段目において λ1 = λ2 であれば e−λ2T+λ1t という部分は T − tにのみ依存する
ことに注意。
(3)。A′ = 1

2C
2
1 + 1

2C
2
2 − δ0(t)なのでこれを

∫ t

T
で積分して週末条件 A(T, T ) = 0を用いると、

A(t, T ) =

∫ T

t

(
δ0(s)−

1

2

(
C2

1 (s, T ) + C2
2 (s, T )

))
ds

となる。積分は計算しなくて良いようなのでここで終わっておく。C1, C2 は求まっているので A も求めら
れる。
(4)。

B(0, T ) = f(0, T, Y1(0), Y2(0)) = exp (−Y1(0)C1(t, T )− Y2(0)C2(0, T )−A(0, T ))
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の両辺に logをつければ

logB(0, T ) = −Y1(0)C1(t, T )− Y2(0)C2(0, T )−A(0, T )

となるので、(3)の結果を代入して

logB(0, T ) = −Y1(0)C1(0, T )− Y2(0)C2(0, T )−
∫ T

0

(
δ0(s)−

1

2

(
C2

1 (s, T ) + C2
2 (s, T )

))
ds

となる。T で微分すると、週末条件 C1(T, T ) = C2(T, T ) = 0に注意すれば、

∂

∂T
logB(0, T ) = −Y1(0)

∂

∂T
C1(0, T )− Y2(0)

∂

∂T
C2(0, T )− δ0(T )

+
1

2

∂

∂T

∫ T

0

(
C2

1 (s, T ) + C2
2 (s, T )

)
ds

= −Y1(0)
∂

∂T
C1(0, T )− Y2(0)

∂

∂T
C2(0, T )− δ0(T )

+
1

2

((
C2

1 (T, T ) + C2
2 (T, T )

)
+

∫ T

0

∂

∂T

(
C2

1 (s, T ) + C2
2 (s, T )

)
ds

)

= −Y1(0)
∂

∂T
C1(0, T )− Y2(0)

∂

∂T
C2(0, T )− δ0(T )

+

∫ T

0

(
C1(s, T )

∂

∂T
C1(s, T ) + C2(s, T )

∂

∂T
C2(s, T )

)
ds

を得る。 ∂
∂T Ci(t, T ), i = 1, 2を計算する。関数 Ci(t, T )は T − tにしか依存しないことに注意すれば、ある

関数 C̄i が存在して C̄i(T − t) = Ci(t, T ) となる。この等式の両辺を t, T で微分する。τ = T − t とおいて
C̄ ′

i(τ)で C̄i の τ での微分を表すと、

∂

∂t
Ci(t, T ) =

∂

∂t
C̄i(T − t) = −C̄ ′

i(τ),

∂

∂T
Ci(t, T ) =

∂

∂T
C̄i(T − t) = C̄ ′

i(τ),

となる。従って ∂
∂tCi(t, T ) = − ∂

∂T Ci(t, T ) がわかる。以上と週末条件 Ci(T, T ) = 0より、∫ T

0

(
C1(s, T )

∂

∂T
C1(s, T ) + C2(s, T )

∂

∂T
C2(s, T )

)
ds

= −
∫ T

0

(
C1(s, T )

∂

∂s
C1(s, T ) + C2(s, T )

∂

∂s
C2(s, T )

)
ds

= −1

2

∫ T

0

∂

∂s

(
C2

1 (s, T ) + C2
2 (s, T )

)
ds

= −1

2

∫ T

0

∂

∂s

(
C2

1 (s, T ) + C2
2 (s, T )

)
ds

=
1

2

(
C2

1 (0, T ) + C2
2 (0, T )

)
これはモデルパラメーターを用いて表すことのできる式である (あまりに面倒な式で整理もできなさそうなの
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でこの計算は諦めた)。以上より

δ0(T ) =
∂

∂T
logB(0, T )− Y1(0)

∂

∂T
C1(0, T )− Y2(0)

∂

∂T
C2(0, T )

+

∫ T

0

(
C1(s, T )

∂

∂T
C1(s, T ) + C2(s, T )

∂

∂T
C2(s, T )

)
ds

=
∂

∂T
logB(0, T ) + Y1(0)

∂

∂t
C1(0, T ) + Y2(0)

∂

∂t
C2(0, T ) +

1

2

(
C2

1 (0, T ) + C2
2 (0, T )

)
となる。右辺の ∂

∂T logB(0, T ) 以外の項はすべて与えられた初期値 Y1(0), Y2(0) とモデルパラメーターを用
いて表すことのできる量である。

∂
∂tCi(0, T )を計算してみると次のようになったが計算ミスをしているかも：

∂

∂t
C1(0, T ) = −e−λ1T δ1 +

λ1δ2λ21

λ2

(
e−λ1T − e−λ2T + e−λ2TT

)
,

∂

∂t
C2(0, T ) = − δ2

λ2
e−λ2T .

練習問題 10.4. (1)

(2)

(3)

解答. 式 (10.7.10) と式 (10.7.11) の B̃1, B̃2 は逆なんじゃないか？じゃないと式 (10.7.12) が成り立たなさ
そう。
(1)。X̂ の第一成分と第二成分をそれぞれ X̂1, X̂2 とかけば、X̂1, X̂2 は次で定義されている：

X̂1(t) = U(t),

X̂2(t) = R(t)− e−λ2t

∫ t

0

eλ2uθ(u)du.

それぞれ微分する。X̂1 の微分は U の微分であるから

dX̂1 = dU = −λ1Udt+ σ1dB̃1 = −λ1X̂1dt+ σ1dB̃1

である。X̂2 の微分を計算するために eλ2tX̂2 の微分を二通りの方法で計算すると、

d
(
eλ2tX̂2

)
= eλ2tdX̂2 + λ2e

λ2tX̂2dt

= eλ2tdX̂2 + λ2e
λ2tX̂2dt

= eλ2t
(
dX̂2 + λ2X̂2dt

)
,

d
(
eλ2tX̂2

)
= d

(
eλ2tR(t)−

∫ t

0

eλ2uθ(u)du

)
= d

(
eλ2tR(t)

)
− eλ2tθdt

= eλ2t (dR+ λ2Rdt)− eλ2tθdt

= eλ2t (dR+ λ2Rdt− θdt)

= eλ2t
(
Udt+ σ2dB̃2

)
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= eλ2t
(
X̂1dt+ σ2dB̃2

)

となる。これらを比較すれば
dX̂2 = −λ2X̂2dt+ X̂1dt+ σ2dB̃2

を得る。以上で

dX̂1 = −λ1X̂1dt+ σ1dB̃1,

dX̂2 = −λ2X̂2dt+ X̂1dt+ σ2dB̃2,

となるが、これをベクトルの形で表記すれば所望の結果となっている。
(2)。W̃i は次で与えられている：

W̃1 = B̃1,

W̃2 = − ρ√
1− ρ2

B̃1 +
1√

1− ρ2
B̃2.

これらはマルチンゲールの線形結合なのでマルチンゲールである。従って、これらがブラウン運動であること
を示すには二次変分を計算すれば良い。W̃1 は明らかにブラウン運動である。(dW̃2)

2 を計算すると、

(
dW̃2

)2
=

(
− ρ√

1− ρ2
dB̃1 +

1√
1− ρ2

dB̃2

)2

=
ρ2

1− ρ2

(
dB̃1

)2
− 2

ρ

1− ρ2
dB̃1dB̃2 +

1

1− ρ2

(
dB̃2

)2
=

ρ2

1− ρ2
dt− 2

ρ

1− ρ2
ρdt+

1

1− ρ2
dt

= dt

となるので W̃2 もブラウン運動である。W̃1, W̃2 が独立であることは

dW̃1dW̃2 = dB̃1

(
− ρ√

1− ρ2
dB̃1 +

1√
1− ρ2

dB̃2

)

= − ρ√
1− ρ2

(
dB̃1

)2
+

1√
1− ρ2

dB̃1dB̃2

= − ρ√
1− ρ2

dt+
1√

1− ρ2
ρdt

= 0

から従う。式 (10.7.14) を示すには式 (10.7.13) の両辺に C をかければ良い (C も Σ も定数であることに
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注意)：

dY = d
(
CX̂

)
= CdX̂

= C
(
−KX̂dt+ΣdB̃

)
= −CKX̂dt+ CΣdB̃

= −CKC−1Y dt+ d
(
CΣB̃

)
= −ΛY dt+ dW̃ .

以上で示された。
(3)。L = e−Kt

∫ t

0
eKuΘ(u)duとおく。すると X̂ = X − Lとなるので、

C−1Y + L = C−1CX̂ + L = X̂ + L = X

となる。ここで
X =

[
U
R

]
であるから、L,C−1 を求めることで金利過程 Rを Y1, Y2 により線形な形で表記できることになる。
まず C は求まっているので C−1 は単に逆行列を計算するだけであり、結果は

C−1 =

[
σ1 0

σ2ρ σ2

√
1− ρ2

]
となる。Y を計算する。

Θ =

[
0
θ

]
であるから、

eKuΘ(u) =

[
0

eλ2uθ(u)

]
となり、従って、

L = e−Kt

∫ t

0

eKuΘ(u)du =

[
0

e−λ2t
∫ t

0
eλ2uθ(u)du

]
となる。以上より

C−1Y + L =

[
σ1Y1

σ2ρY1 + σ2

√
1− ρY2 + e−λ2t

∫ t

0
eλ2uθ(u)du

]
となる。よって

R(t) = σ2ρY1(t) + σ2

√
1− ρY2(t) + e−λ2t

∫ t

0

eλ2uθ(u)du

となる。とくに δ1 = σ2ρ, δ2 = σ2

√
1− ρであり、

δ0(t) = e−λ2t

∫ t

0

eλ2uθ(u)du

となる。
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練習問題 10.5.

解答. まず C(t, T ), A(t, T )は T − tにのみ依存する関数であることに注意する。すると、ある関数 C̄, Āが存
在して

C(t, t+ τ̄) = C̄(τ̄),

A(t, t+ τ̄) = Ā(τ̄),

となることがわかる。従って、とくに

L(t) = −1

τ̄
logB(t, t+ τ̄)

= −1

τ̄
(−C(t, t+ τ̄)R(t)−A(t, t+ τ̄))

=
1

τ̄

(
C̄(τ̄)R(t)− Ā(τ̄)

)
となる。よって、0 ≤ t1 < t2 に対して

L(t2)− L(t1) =
1

τ̄

(
C̄(τ̄)R(t2)− Ā(τ̄)

)
− 1

τ̄

(
C̄(τ̄)R(t1)− Ā(τ̄)

)
=

1

τ̄
C̄(τ̄) (R(t2)−R(t1))

となる。a = 1
τ̄ C̄(τ̄)とおくと、

Var(L(t2)− L(t1)) = a2Var(R(t2)−R(t1)),

Cov(L(t2)− L(t1), R(t2)−R(t1)) = aVar(R(t2)−R(t1)),

となることがわかり、以上より L(t2)− L(t1)と R(t2)−R(t1)の相関係数が 1であることがわかる。

練習問題 10.6. (1)

(2)

解答. (1)の問題文中の確率微分方程式 (10.7.16)はボラティリティが δ1 なんじゃないかと思う。
(1)。δ2 = 0なので式 (10.2.6)より

R(t) = δ0 + δ1Y1(t) + δ2Y2(t) = δ0 + δ1Y1(t)

となる。Y1 について解けば Y1 = 1
δ1
(R− δ0) であることに注意。一方、式 (10.2.4)より

dY1 = −λ1Y1dt+ dW̃1

なので、代入すれば

dR = δ1dY1

= −δ1λ1Y1dt+ δ1dW̃1

= −δ1λ1

(
1

δ1
(R− δ0)

)
dt+ δ1dW̃1

= (δ0λ1 − λ1R) dt+ δ1dW̃1

となる。とくに a = δ0λ1, b = λ1 である。
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(2)。式 (10.2.6)、つまり R = δ0 + δ1Y1 + δ2Y2 をそのまま微分して条件を使うと、

dR = δ1dY1 + δ2dY2

= δ1

(
−λ1Y1 + dW̃1

)
+ δ2

(
−λ21Y1dt− λ2Y2dt+ dW̃2

)
= (−(λ1δ1 + λ21δ2)Y1 − λ2δ2Y2) dt+ δ1dW̃1 + δ2dW̃2

= (−λ2δ1Y1 − λ2δ2Y2) dt+ δ1dW̃1 + δ2dW̃2

= −λ2 (δ1Y1 + δ2Y2) dt+ δ1dW̃1 + δ2dW̃2

= −λ2 (R− δ0) dt+ δ1dW̃1 + δ2dW̃2

= (λ2δ0 − λ2R)dt+ δ1dW̃1 + δ2dW̃2

となる。マルチンゲールの項をブラウン運動の定数倍として書くために、

B :
def
= δ1W̃1 + δ2W̃2

とおく。すると

(dB)2 = (δ21 + δ22)dt

となるので、
B̃ :

def
=

1√
δ21 + δ22

B

とおけばこれはブラウン運動となる。このとき

a = λ2δ0, b = λ2, σ =
√

δ21 + δ22

とおけば
dR = (a− bR)dt+ σdB̃

となることがわかる。

練習問題 10.7. (1)

(2)

(3)

(4)

解答. (1)。B(t, T ) = e−C1(T−t)Y1(t)−C2(T−t)Y2(t)−A(t,T ) を T を固定して微分すれば

dB(t, T ) = −B(t, T )d(C1(T − t)Y1(t) + C2(T − t)Y2(t) +A(t, T ))

= −B(t, T )(C1(T − t)dY1(t) + C2(T − t)dY2(t) +A′(t, T )dt)

= (dt項)−B(t, T )C1(T − t)dW̃1(t)−B(t, T )C2(T − t)dW̃2(t)

となる。従って

W̃T
j (t) =

∫ T

0

Cj(T − u)du+ W̃j(t)

がわかる。
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(2)。満期 T̄ の債権の時刻 tでのリスク中立価格 B(t, T̄ )は

B(t, T̄ ) =
1

D(t)
Ẽ
[
D(T̄ )

∣∣F(t)
]

である。従って、このコール・オプションのペイオフは (B(T, T̄ )−K
)+ であり、リスク中立価格は

Ẽ
[
D(T )

(
B(T, T̄ )−K

)+∣∣∣F(t)
]

となる。これを T -フォワード測度に変換して計算すると、

Ẽ
[
D(T )

(
B(T, T̄ )−K

)+∣∣∣F(t)
]

= B(0, T )Ẽ

[
D(T )

B(0, T )

∣∣∣∣F(t)

]
· ẼT

[(
B(T, T̄ )−K

)+∣∣∣F(t)
]

= Ẽ [D(T )|F(t)] · ẼT
[(
B(T, T̄ )−K

)+∣∣∣F(t)
]

= D(t)B(t, T ) · ẼT
[(
B(T, T̄ )−K

)+∣∣∣F(t)
]

となる。t = 0とすれば D(0) = 1であるから所望の結果を得る。
(3)。Y1, Y2 はリスク中立測度のもとでのガウス過程である (cf. 10.2.1 節の最後の二文) が、式 (10.2.43)-

(10.2.46)を T -フォワード測度に変換することで、同じ理屈により Y1, Y2 は T -フォワード測度でもガウス過
程であることがわかる。従ってとくにそれらの線形結合に定数を足した X は正規分布である。
(4)。示さなければならないのは

ẼT
[
(eX −K)+

]
= eµN(d+)−KN(d−)

である。X は平均 µ− 1
2σ

2 で分散 σ2 の正規分布であるから、

ẼT
[
(eX −K)+

]
=

1√
2πσ

∫ ∞

−∞
(ex −K)

+
e−(x−µ+ 1

2σ
2)2/2σ2

dx

=
1√
2πσ

∫ ∞

logK

(ex −K) exp

(
− 1

2σ2

(
x− µ+

1

2
σ2

)2
)
dx

=
1√
2πσ

∫ ∞

logK

exp

(
x− 1

2σ2

(
x− µ+

1

2
σ2

)2
)
dx

−K
1√
2πσ

∫ ∞

logK

exp

(
− 1

2σ2

(
x− µ+

1

2
σ2

)2
)
dx

=
1√
2πσ

∫ ∞

logK

exp

(
− 1

2σ2

(
x2 + 2x

(
−µ+

1

2
σ2

)
+

(
−µ+

1

2
σ2

)2

− 2σ2x

))
dx

−K
1√
2πσ

∫ ∞

−µ+logK+ 1
2σ

2

e−x2/2σ2

dx

=
1√
2πσ

∫ ∞

logK

exp

(
− 1

2σ2

(
x2 + 2x

(
−µ− 1

2
σ2

)
+

(
−µ+

1

2
σ2

)2
))

dx

−K
1√
2π

∫ ∞

−d−

e−x2/2dx
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=
1√
2πσ

∫ ∞

logK

exp

(
− 1

2σ2

((
x− µ− 1

2
σ2

)2

−
(
µ+

1

2
σ2

)2

+

(
−µ+

1

2
σ2

)2
))

dx−KN(d−)

=
1√
2πσ

∫ ∞

logK

exp

(
− 1

2σ2

((
x− µ− 1

2
σ2

)2

− 2µσ2

))
dx−KN(d−)

=
1√
2πσ

eµ
∫ ∞

logK−µ− 1
2σ

2

e−
1

2σ2 x2

dx−KN(d−)

=
1√
2π

eµ
∫ ∞

−d+

e−x2/2dx−KN(d−)

= eµN(d+)−KN(d−)

と計算できる。これは所望の結果である。

練習問題 10.8. (1)

(2)

(3)

解答. (1)。言われた通りに積分の順序を入れ替えるだけ。
(2)。∫ t

0
α̂(u, t, T )duを tで微分すると、

∂

∂t

∫ t

0

α̂(u, t, T )du

= α̂(t, t, T ) +

∫ t

0

∂

∂t
α̂(u, t, T )du

= α̂(t, t, T ) +

∫ t

0

(
∂

∂t

∫ T

t

α(u, v)dv

)
du

= α̂(t, t, T )−
∫ t

0

α(u, t)du

=

∫ T

t

α(t, v)dv −
∫ t

0

α(u, t)du

となる。とくに
d

(∫ t

0

α̂(u, t, T )du

)
=

(∫ T

t

α(t, v)dv

)
dt−

(∫ t

0

α(u, t)du

)
dt

となる。同じく

d

(∫ t

0

σ̂(u, t, T )dW (u)

)
= σ̂(t, t, T )dW (u) +

(∫ t

0

(
d

dt
σ̂(u, t, T )

)
dW (u)

)
dt

= σ̂(t, t, T )dW (u) +

(∫ t

0

(
d

dt

∫ T

t

σ(u, v)dv

)
dW (u)

)
dt

= σ̂(t, t, T )dW (u)−
(∫ t

0

σ(u, t)dW (u)

)
dt

=

(∫ T

t

σ(t, v)dv

)
dW (u)−

(∫ t

0

σ(u, t)dW (u)

)
dt
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となる。以上より

− d

(∫ T

t

f(t, v)dv

)

= f(0, t)dt−

(∫ T

t

α(t, v)dv

)
dt+

(∫ t

0

α(u, t)du

)
dt

−

(∫ T

t

σ(t, v)dv

)
dW (u) +

(∫ t

0

σ(u, t)dW (u)

)
dt

となる。
(3)。式 (10.3.4)、式 (10.3.5)、これまでの結果、それと式 (10.3.9)により

R(t)dt = f(t, t)dt

= f(0, t)dt+

(∫ t

0

α(u, t)du

)
dt+

(∫ t

0

σ(u, t)dW (u)

)
dt

=

(∫ T

t

α(t, v)dv

)
dt+

(∫ T

t

σ(t, v)dv

)
dW (u)− d

(∫ T

t

f(t, v)dv

)

= α∗(t, T )dt+ σ∗(t, T )dW (u)− d

(∫ T

t

f(t, v)dv

)

となる。これを整理すれば式 (10.3.10)を得る。

練習問題 10.9. (1)

(2)

解答. (1)。無裁定条件が与えられた式の形であることを示す問題である。10.3.2節と 10.3.3節の議論をその
まま真似るだけ。普通に無裁定条件を考えると、D(t)B(t, T )がマルチンゲールとなるような測度、つまりリ
スク中立測度が存在するための条件を考えれば良い。そのような測度は (多次元) ギルザノフの定理によって
構成されるので、まずは D(t)B(t, T )の微分を計算して、ギルザノフの定理の形にもっていく。
B の定義やそれらの微分は、式 (10.3.3)より、

B(t, T ) = exp

(
−
∫ T

t

f(t, v)dv

)
,

dB(t, T ) = B(t, T )d

(
−
∫ T

t

f(t, v)dv

)
+

1

2
B(t, T )

(
d

(
−
∫ T

t

f(t, v)dv

))2

,

となるので、まずは d
(
−
∫ T

t
f(t, v)dv

)
を計算する必要がある。これを計算すると、

d

(
−
∫ T

t

f(t, v)dv

)

= f(t, t)dt−
∫ T

t

df(t, v)dv

⋆
= R(t)dt−

∫ T

t

α(t, v)dt+

d∑
j=1

σj(t, v)dWj(t)

 dv

134



♠
= R(t)dt−

(∫ T

t

α(t, v)dv

)
dt−

d∑
j=1

(∫ T

t

σj(t, v)dv

)
dWj(t)

♣
= R(t)dt− α∗(t, T )dt−

d∑
j=1

σ∗
j (t, T )dWj(t)

となる。ただし⋆の箇所は R(t) = f(t, t)を用い、♠積分の順序を入れ替え、♣の箇所は

α∗(t, T ) :
def
=

∫ T

t

α(t, v)dv,

σ∗
j (t, T ) :

def
=

∫ T

t

σj(t, v)dv, (j = 1, · · · , d),

とおいた。とくに (
d

(
−
∫ T

t

f(t, v)dv

))2

=

R(t)dt− α∗(t, T )dt−
d∑

j=1

σ∗
j (t, T )dWj(t)


=

d∑
j=1

(
σ∗
j (t, T )

)2
dt

となる。次に D(t)B(t, T )の微分を計算すると、
d(D(t)B(t, T ))

= B(t, T )dD(t) +D(t)dB(t, T )

= −R(t)D(t)B(t, T )dt+D(t)B(t, T )

d

(
−
∫ T

t

f(t, v)dv

)
+

1

2

(
d

(
−
∫ T

t

f(t, v)dv

))2


= D(t)B(t, T )

−R(t)dt+

R(t)dt− α∗(t, T )dt−
d∑

j=1

σ∗
j (t, T )dWj(t)

+
1

2

d∑
j=1

(
σ∗
j (t, T )

)2
dt


= −D(t)B(t, T )

α∗(t, T )− 1

2

d∑
j=1

(
σ∗
j (t, T )

)2 dt+

d∑
j=1

σ∗
j (t, T )dWj(t)


となる。カッコ内が

d∑
j=1

σ∗
j (t, T ) (Θj(t)dt+ dWj(t))

と整理できれば、ギルザノフの定理により構成される新たな測度 P̃ のもとで dW̃ (t) = Θj(t)dt +

σ∗
j (t, T )dWj(t) により定義される確率過程 W̃j はブラウン運動となり、さらにこのとき

d(D(t)B(t, T )) = −D(t)B(t, T )

d∑
j=1

σ∗
j (t, T )dW̃j(t)

となって D(t)B(t, T )は P̃のもとでマルチンゲールとなる。以上よりリスク中立測度が存在するためにはα∗(t, T )− 1

2

d∑
j=1

(
σ∗
j (t, T )

)2 dt+

d∑
j=1

σ∗
j (t, T )dWj(t) =

d∑
j=1

σ∗
j (t, T ) (Θj(t)dt+ dWj(t))
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となる Θj(t)があれば良い、ということになる。dWj(t)の係数は両辺で同じなので、dtの係数を比較すると

α∗(t, T )− 1

2

d∑
j=1

(
σ∗
j (t, T )

)2
=

d∑
j=1

σ∗
j (t, T )Θj(t)

を得る。T で両辺を微分すれば

α(t, T )−
d∑

j=1

σj(t, T )σ
∗
j (t, T ) =

d∑
j=1

σj(t, T )Θj(t)

となり、整理すれば

α(t, T ) =

d∑
j=1

σj(t, T )
(
σ∗
j (t, T ) + Θj(t)

)
を得る。これは所望の等式である。
(2)。(1)で得られた式を整理すると

α(t, T )−
d∑

j=1

σj(t, T )σ
∗
j (t, T ) =

d∑
j=1

σj(t, T )Θj(t)

となるので、T = T1, · · · , Td を入れれば d個の等式

α(t, Ti)−
d∑

j=1

σj(t, Ti)σ
∗
j (t, Ti) =

d∑
j=1

σj(t, Ti)Θj(t)

を得る。これらの等式を縦に並べて (σj(t, Ti))ij の逆行列を左からかければ Θj(t) について解くことができ
る。従ってとくに Θj は一意である。

練習問題 10.10. (1)

(2)

解答. (1)。今の状況を整理すると、a(t), b(t), σ(t)は時刻について確定的な正値の関数で、

β(t, R(t)) = a(t)− b(t)R(t),

γ(t, R(t)) = σ(t),

C ′(t, T ) = b(t)C(t, T )− 1,

A′(t, T ) = −a(t)C(t, T ) +
1

2
σ2(t)C2(t, T ),

となっている。C ′(t, T ), A′(t, T )を T で微分すれば、上の等式より、

∂

∂T
C ′(t, T ) = b(t)

∂

∂T
C(t, T ),

∂

∂T
A′(t, T ) = −a(t)

∂

∂T
C(t, T ) + σ2(t)C(t, T )

∂

∂T
C(t, T ),
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を得る。これを式 (10.3.27)の左辺に代入して整理すれば、

∂

∂T
C(t, T )β(t, R(t)) +R(t)

∂

∂T
C ′(t, T ) +

∂

∂T
A′(t, T )

=
∂

∂T
C(t, T ) (a(t)− b(t)R(t)) +R(t)b(t)

∂

∂T
C(t, T )

+
∂

∂T

(
−a(t)

∂

∂T
C(t, T ) + σ2(t)C(t, T )

∂

∂T
C(t, T )

)
= σ2(t)C(t, T )

∂

∂T
C(t, T )

= C(t, T )
∂

∂T
C(t, T )γ2(t, R(t))

となる。これは所望の結果である。
(2)。今の状況を整理すると、a, b, σ は正の定数で、

β(t, R(t)) = a− bR(t),

γ(t, R(t)) = σ
√

R(t),

C ′(t, T ) = bC(t, T ) +
1

2
σ2C2(t, T )− 1,

A′(t, T ) = −aC(t, T ),

となっている。C ′(t, T ), A′(t, T )を T で微分すれば、上の等式より、

∂

∂T
C ′(t, T ) = b

∂

∂T
C(t, T ) + σ2C(t, T )

∂

∂T
C(t, T ),

∂

∂T
A′(t, T ) = −a

∂

∂T
C(t, T ),

を得る。これを式 (10.3.27)の左辺に代入して整理すれば、

∂

∂T
C(t, T )β(t, R(t)) +R(t)

∂

∂T
C ′(t, T ) +

∂

∂T
A′(t, T )

=
∂

∂T
C(t, T ) (a− bR(t)) +R(t)

(
b
∂

∂T
C(t, T ) + σ2C(t, T )

∂

∂T
C(t, T )

)
+

(
−a

∂

∂T
C(t, T )

)
= σ2R(t)C(t, T )

∂

∂T
C(t, T )

= C(t, T )
∂

∂T
C(t, T )γ2(t, R(t))

となる。これは所望の結果である。

練習問題 10.11.

解答. 各金利支払い日 Tj で δK − δL(Tj−1, Tj−1) のペイオフがある。各々の初期価格は定理 10.4.1 と
B(t, T ) = Ẽ [D(T )|F(t)]より

Ẽ [D(Tj) (δK − δL(Tj−1, Tj−1))]

= δKẼ [D(Tj)]− δẼ [D(Tj)L(Tj−1, Tj−1)]

= δKB(0, Tj)− δB(0, Tj)L(0, Tj−1)

であるから、これらを全て足し合わせることで所望の等式を得る。
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練習問題 10.12.

解答. S(t)を時刻 T + δ でペイオフ L(T, T )となる金利スワップの時刻 tでのリスク中立価格とする。この
ときリスク中立価格評価式より

D(t)S(t) = Ẽ [D(T + δ)L(T, T )|F(t)]

となる。L(t, T ) = 1
δ

(
B(t,T )

B(t,T+δ) − 1
)
であるから、とくに T ≤ t ≤ T + δ のときは L(T, T )は F(t)-可測であ

り、従って
D(t)S(t) = L(T, T )Ẽ [D(T + δ)|F(t)] = D(t)B(t, T + δ)L(T, T )

となる。両辺を D(t)で割れば定理 (10.4.1)の式を得る。
0 ≤ t ≤ T のとき。L(T, T )は F(T )-可測であるから、

D(t)S(t) = Ẽ [D(T + δ)L(T, T )|F(t)]

= Ẽ
[
D(T + δ)

1

δ

(
B(T, T )

B(T, T + δ)
− 1

)∣∣∣∣F(t)

]
=

1

δ
Ẽ
[
Ẽ
[
D(T + δ)

(
1

B(T, T + δ)
− 1

)∣∣∣∣F(T )

]∣∣∣∣F(t)

]
=

1

δ
Ẽ
[
Ẽ [D(T + δ)|F(T )]

(
1

B(T, T + δ)
− 1

)∣∣∣∣F(t)

]
=

1

δ
Ẽ
[
D(T )B(T, T + δ)

(
1

B(T, T + δ)
− 1

)∣∣∣∣F(t)

]
=

1

δ
Ẽ [D(T )(1−B(T, T + δ))|F(t)]

=
1

δ
(D(t)B(t, T )−D(t)B(t, T + δ))

= D(t)B(t, T + δ)
1

δ

(
B(t, T )

B(t, T + δ)
− 1

)
= D(t)B(t, T + δ)L(t, T )

となる。両辺を D(t)で割れば定理 (10.4.1)の式を得る。とくに t = 0のときが本問題である。
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11 ジャンプ過程入門
練習問題 11.1. (1)

(2)

解答. (2)が正しければ、0 ≤ s < tに対して

E
[
M2(t)− λt

∣∣F(s)
]
= M2(s)− λs

となるので整理することで

E
[
M2(t)

∣∣F(s)
]
= M2(s) + λ(t− s) ≥ M2(s)

を得て、M2が劣マルチンゲールであること、つまり (1)が示される。よって (2)のみ示せば良い。N(t)−N(s)

が F(s)と独立であり E[N(t)−N(s)] = λ(t− s)であることに注意すると、

E
[
M2(t)− λt

∣∣F(s)
]

= E
[(
M2(t)− λt

)
−
(
M2(s)− λs

)∣∣F(s)
]
+M2(s)− λs

= E
[(
N2(t)− 2λtN(t) + λ2t2 − λt

)
−
(
N2(s)− 2λsN(s) + λ2s2 − λs

)∣∣F(s)
]

+M2(s)− λs

= E
[(
N2(t)− 2λtN(t)

)
−
(
N2(s)− 2λsN(s)

)∣∣F(s)
]

+ λ2(t2 − s2)− λ(t− s)M2(s)− λs

= E
[
(N(t)−N(s))

2
+ 2N(s) (N(t)−N(s))− 2λ (tN(t)− sN(s))

∣∣∣F(s)
]

+ λ2(t2 − s2)− λ(t− s)M2(s)− λs

= E
[
(N(t)−N(s))

2
]
+ E [2N(s) (N(t)−N(s))]

− 2λE [t(N(t)−N(s)) +N(s)(t− s)|F(s)]

+ λ2(t2 − s2)− λ(t− s)M2(s)− λs

= E
[
(N(t)−N(s))

2
]
+ 2N(s)E [N(t)−N(s)]− 2λtE [N(t)−N(s)]

− 2λN(s)(t− s) + λ2(t2 − s2)− λ(t− s)M2(s)− λs

= E
[
(N(t)−N(s))

2
]
− 2λ2t(t− s) + λ2(t2 − s2)− λ(t− s) +M2(s)− λs

= E
[
(N(t)−N(s))

2
]
− λ2(t− s)2 − λ(t− s) +M2(s)− λs

となる。ここで (N(t)−N(s))
2 の平均が λ2(t− s)2 + λ(t− s)であることから、計算結果はM2(s)− λsと

なる。以上で示された。

練習問題 11.2.

解答. 0 ≤ τk+1 ≤ tとなるときN(s) = k,N(s+t) = k+1となり、t < τk+1となるときN(s) = k,N(s+t) =

k となる。つまり最初の二つの確立はたんに 0 ≤ τk+1 ≤ t となる確率を計算する問題である。τk+1 が指数
分布であることから、その確率は 1 − e−λt であり、この近似は λt + O(t2) である。よって N(s) = k のも
とで N(s + t) = k + 1 となる確率は λt + O(t2) であり、N(s) = k のもとで N(s + t) = k となる確率は
1− λt+O(t2)である。
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最後に、s + t までに二回ジャンプする確率は、0 ≤ τk+1, τk+2 ≤ t となる確率以下であるから、とくに
O(t2)で抑えられる。

練習問題 11.3.

解答. 普通に計算すると、0 ≤ s < tに対し、

E [S(t)|F(s)]

= S(s) · E
[
S(t)S−1(s)

∣∣F(s)
]

= S(s) · E
[
(σ + 1)N(t)−N(s)e−λσ(t−s)

∣∣∣F(s)
]

= S(s)e−λσ(t−s) · E
[
(σ + 1)N(t)−N(s)

]
= S(s)e−λσ(t−s) ·

∞∑
k=0

(σ + 1)k
λk(t− s)k

k!
e−λ(t−s)

= S(s)e−λ(σ+1)(t−s)
∞∑
k=0

(σ + 1)k
λk(t− s)k

k!

= S(s)

となるので S(t)はマルチンゲールである。

練習問題 11.4.

解答. まず補正ポアソン過程M1(t) = N1(t)− λ1t,M2(t) = N2(t)− λ2t は各 tで独立であり、さらにどちら
もマルチンゲール (定理 11.2.4) であるから、

E[M1(t)M2(t)] = E[M1(t)]E[M2(t)] = M1(0)M2(0) = 0

となる。次に積の公式 (系 11.5.5) を用いると

M1(t)M2(t) =

∫ t

0

M1(−s)dM2(s) +

∫ t

0

M2(−s)dM1(s) + [M1,M2](t)

となる。M1(−s),M2(−s)は左連続でM1(t),M2(t)はマルチンゲールであるから、定理 11.4.5より二つの伊
藤積分はそれぞれマルチンゲールである。以上より [M1,M2](t)もマルチンゲールとなる。二次変分を計算す
るには、定理 11.4.7を用いれば良い。ここでMi(t)が補正ポアソン過程であることから、Mi(t)の伊藤積分
の項、つまり定理 11.4.7の Γにあたる過程は、恒等的に 0であり、従って二次変分は同時に行われたジャン
プの積み重ね、すなわち次のようになる：

[M1,M2](t) =
∑

0<s≤t

(N1(s−)−N(s)) (N2(s−)−N2(s)) .

Ni(s)は単調増加であるから、上の式は非負である。よって、ほとんど確実に同時にジャンプすることがない、
ということを示すには、同時のジャンプの積み重ねの期待値が 0であれば良い。だがそれは [M1,M2](t)のマ
ルチンゲール性より従う。以上で示された。

練習問題 11.5.
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解答.

f(t, x1, x2) :
def
= exp (u1x1 + u2x2 − λ(eu1 − 1)t− λ(eu2 − 1)t) ,

Y (t) :
def
= f(t,N1(t), N2(t)),

とおく。

ft = −λ (eu1 + eu2 − 2) f(t, x1, x2),

N c
i (t) = 0, (i = 1, 2),

Y (0) = 1,

となる。Y (t)がマルチンゲールであることを証明したい。N1(t), N2(t)はほとんど確実に同時にジャンプす
ることはないので、そのためには、N1(t), N2(t)は同時にジャンプしないとしてよい。すると

f(s,N1(s), N2(s))− f(s,N1(s−), N2(s−))

= f(s,N1(s−), N2(s−)) (exp(u1(N1(s)−N1(s−)) + u2(N2(s)−N2(s−))− 1)

= (eu1 − 1)f(s,N1(s−), N2(s−))∆N1 または (eu2 − 1)f(s,N1(s−), N2(s−))∆N2,

= (eu1 − 1)f(s,N1(s−), N2(s−))∆N1 + (eu2 − 1)f(s,N1(s−), N2(s−))∆N2,

となる。ここでMi(s) = Ni(s)− λs, (i = 1, 2)とおけば、伊藤の公式より

Y (t) = 1 +

∫ t

0

ft(s,N1(s), N2(s))ds+
∑

0<s≤t

(f(s,N1(s), N2(s))− f(s,N1(s−), N2(s−)))

= 1− λ (eu1 + eu2 − 2)

∫ t

0

f(s,N1(s), N2(s))ds

+
∑

0<s≤t

((eu1 − 1)f(s,N1(s−), N2(s−))∆N1 + (eu2 − 1)f(s,N1(s−), N2(s−))∆N2)

= 1 + (eu1 − 1)

∫ t

0

f(s,N1(s−), N2(s−))dM1(s) + (eu2 − 1)

∫ t

0

f(s,N1(s−), N2(s−))dM2(s)

となる。Mi(t)はマルチンゲールであり、また f(s,N1(s−), N2(s−))は左連続であるから、積分の項はそれ
ぞれマルチンゲールである。よって Y (t)もマルチンゲールであることがわかった。
Y (t)はマルチンゲールであるから、

E[Y (t)] = Y (0) = 1

がわかる。一方、Y (t) = f(t,N1(t), N2(t))の定義より、

E[Y (t)] = E [exp (u1N1(t) + u2N2(t)− λ(eu1 − 1)t− λ(eu2 − 1)t)]

= E [exp (u1N1(t) + u2N2(t))] · exp (−λ(eu1 − 1)t− λ(eu2 − 1)t)

であり、以上より

E [exp (u1N1(t) + u2N2(t))] = exp (λ(eu1 − 1)t) exp (λ(eu2 − 1)t)

となる。これは N1(t), N2(t)の同時積率母関数がそれぞれの積率母関数の積に分かれることを主張しており、
すなわち N1(t), N2(t)は独立であることを意味する。

練習問題 11.6.
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解答. Q(t) =
∑N(t)

i=1 Yi となる同じ分布に従う確率変数の族 Yi がとれる。Yi は同じ分布に従うので、各 iに
対して Yi の積率母関数はどれも同じである。その関数を φとおく。

X(t) :
def
= u1W (t) + u2Q(t)− 1

2
u2
1t− λ(φ(u2)− 1)t,

Z(t) :
def
= eX(t),

とおく。X(0) = 0, Z(0) = 1であるから、練習問題 11.5と同様にして Z(t)がマルチンゲールであることを証
明できれば良い。
X(t)は

• 伊藤積分の項 u1W (t)、
• リーマン積分の項 − 1

2u
2
1t− λ(φ(u2)− 1)t、

• 純粋なジャンプ項 u2Q(t)、

からなるので、とくに

dXc(s) = u1dW (s)− 1

2
u2
1ds− λ(φ(u2)− 1)ds,

(dXc(s))2 = u2
1ds,

となる。また、Z が時刻 sにジャンプすれば、

Z(s)− Z(s−) = eX(s) − eX(s−)

= eX(s−)+u2YN(s) − eX(s−)

= eX(s−)
(
eu2YN(s) − 1

)
= Z(s−)

(
eu2YN(s) − 1

)
∆N(s)

となる。ここで R(t) :
def
=
∑N(t)

i=1

(
eu2Yi − 1

) とおく。これは複合ポアソン過程である。さらに
R(s)−R(s−) =

(
eu2YN(s) − 1

)
∆N(s)

となっているので、
Z(s)− Z(s−) = Z(s−)∆R(s)

となる。また、各 eu2Yi −1の平均は φ(u2)−1であるから、定理 11.3.1より過程 S(t) :
def
= R(t)−λ(φ(u2)−1)t

はマルチンゲールである。伊藤の公式より

Z(t) = Z(0) +

∫ t

0

eX(s)dXc(s) +
1

2

∫ t

0

eX(s)dXc(s)dXc(s) +
∑

0<s≤t

(Z(s)− Z(s−))

= 1 + u1

∫ t

0

Z(s)dW (s)− 1

2
u2
1

∫ t

0

Z(s)ds− λ(φ(u2)− 1)

∫ t

0

Y (s)ds

+
1

2
u2
1

∫ t

0

Z(s)ds+
∑

0<s≤t

Z(s−)
(
eu2YN(s) − 1

)
∆N(s)

= 1 + u1

∫ t

0

Z(s)dW (s)− λ(φ(u2)− 1)

∫ t

0

Z(s−)ds+
∑

0<s≤t

Z(s−)
(
eu2YN(s) − 1

)
∆N(s)
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= 1 + u1

∫ t

0

Z(s)dW (s)− λ(φ(u2)− 1)

∫ t

0

Z(s−)ds+
∑

0<s≤t

Z(s−)∆R(s)

= 1 + u1

∫ t

0

Z(s)dW (s)−
∫ t

0

Z(s−)d(S(s))

となる。ここでブラウン運動による伊藤積分の項はマルチンゲールであり、また Z(s−) は左連続であって
S(s)はマルチンゲールであるから最後の項もマルチンゲールとなる。以上で Z(t)はマルチンゲールとなり、
所望の結果が得られた。

練習問題 11.7.

解答. F(t) を Q(t) を観測することで得られる filtration とする。x を変数として g(t, x) :
def
= E[h(Q(T ) −

Q(t) + x]とおく。Q(T )−Q(t)は F(t)と独立で、Q(t)は F(t)-可測なので、独立性の補題より

E [h(Q(T ))|F(t)] = E [h(Q(T )−Q(t) +Q(t))|F(t)] = g(t,Q(t))

が成り立つ。これは複合ポアソン過程 Q(t)がマルコフ過程であることを示している。
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