
Sheaves on Manifolds の解答
ゆじとも

2025年 8月 2日

現時点 (=2025年 8月 2日) で解答を書いていない (≒解けていない) 問題：問題 1.30 (ii)、問題 2.16 (ii)、
問題 2.21 以降。

• 解きっぱなしであまり見直してないのでいっぱいミスがあると思います。参考にする場合は注意してく
ださい。ミスを発見した方は指摘していただければ幸いです。

• 自然そうな仮定が本文中に書かれていないように見えた場合は、そのような仮定を置いた上で解いてい
ます。なので、その場合は問題文を少し変更して書いて、問題文の直後に Remark を置くようにしま
した。そのような問題であって、本文の指示通りの仮定で解くことができるものがあれば、指摘してい
ただければ幸いです。

• 私はこの分野の専門家ではありませんので、重ねて申し上げますが、本当にヤバいミスをしたまま放
置している可能性は十分あります。また、解答も「最適解」から程遠いものもたくさんあるかと思いま
す。そのようなもののうち、あまりに目に余るものがあれば、指摘していただければ幸いです。

• TeX的な問題点 (ハイパーリンクが PDFファイルで機能してないのとか)に関しては現時点 (=2025年
8月 2日) では放置しています。そのような問題と向き合う機運が高まったら修正します。

•「本文」は柏原先生と Schapira 先生 (私は Schapira 先生という方について全く存じ上げておりません
ので「先生」という敬称が正しいものかわかりませんが) の共著である「Sheaves on Manifolds」を指
しています。現時点 (=2025年 8月 2日) では「本文定理 hoge」のような形で参照していますが、ちゃ
んと TeX的にただしい参照の方法に変更する機運が高まったら修正します。
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1 Homological algebra

問題 1.1. C を加法圏とする。このとき、合成が双線型となるような各 HomC に入るアーベル群の構造は一意
的であることを示せ。

Proof. C の加法圏の定義による Homの加法をたんに +で表し、問いの性質を満たす加法を +1 で表すことに
する。X,Y ∈ C とする。合成 HomC(X, 0) × HomC(0, Y ) → HomC(X,Y ) は +1 に関して (+に関しても)

双線型であるから、その像として定まる合成射 X → 0→ Y は +1 に関する (同様に、+に関する) 単位元で
ある。よって 0は +1 に関する単位元である。自然な同型と加法

HomC(X,Y × Y )
∼−→ HomC(X,Y )×HomC(X,Y )

+−→ HomC(X,Y )

により射 m : Y × Y → Y を得る。二つの射 f, g ∈ HomC(X,Y ) に対して、(f, g) ∈ HomC(X,Y × Y ) と
mを合成すると、mの定義により m ◦ (f, g) = f + g である。一方、mを合成する射 HomC(X,Y × Y ) →
HomC(X,Y )は、+1の定義により+1と可換する。0が+1の単位元であることから、(f, g) = (f, 0)+1 (0, g)

であるので、従って、

f + g = m ◦ (f, g) = m ◦ [(f, 0) +1 (0, g)] = m ◦ (f, 0) +1 m ◦ (0, g) = f +1 g

がわかる。以上で問題 1.1の証明を完了する。

問題 1.2. C, C′ を二つの圏、F : C → C′, G : C′ → C を二つの函手とする。

(i) 次の二つの条件は同値であることを示せ：
(a) 函手の射 α : F ◦G→ idC′ , β : G ◦ F → idC が存在して、任意の X ∈ C, Y ∈ C′ に対し

idG(Y ) = G(αY ) ◦ βG(Y ) , idF (X) = αF (X) ◦ F (βX)

となる。
(b) HomC′(F (−), ?),HomC(−, G(?)) は函手 Cop × C′ → Setとして同型である。

(ii) 任意の函手 F : C → C′ に対して、F の左 (または右) 随伴は、存在すれば、どの二つも函手として同型
となる。

(iii) 任意の函手 F : C → C′ に対して、F の左 (または右) 随伴が存在するための必要十分条件は、任意の対
象 Y ∈ C′ に対して函手 X 7→ HomC′(F (X), Y ) (または X 7→ HomC′(Y, F (X))) が表現可能であるこ
とである。

Proof. (i) を示す。(a) を仮定する。F : C → C′ は函手なので、Cop × C から Set への二つの函手の間の射
HomC(−, ?)→ HomC′(F (−), F (?)) を引き起こす。これを F̄ と書く。同じく Ḡを定義する。函手の射

P : HomC′(F (−), ?) Ḡ−→ HomC(G(F (−)), G(?))
(??)◦β(−)−−−−−−→ HomC(−, G(?))

Q : HomC(−, G(?))
F̄−→ HomC′(F (−), F (G(?)))

α(?)◦(??)−−−−−−→ HomC′(F (−), ?)

を合成で定義する。すると、各対象 (X,Y ) ∈ Cop × C′ と f ∈ HomC′(F (X), Y ), g ∈ HomC(X,G(Y )) に
対し、

Q(X,Y )(P(X,Y )(f)) = αY ◦ F (G(f) ◦ βX)) P(X,Y )(Q(X,Y )(g)) = G(αY ◦ F (g)) ◦ βX
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= αY ◦ F (G(f)) ◦ F (βX) = G(αY ) ◦G(F (g)) ◦ βX
⋆
= f ◦ αF (X) ◦ F (βX)

⋆
= G(αY ) ◦ βG(Y ) ◦ g

∗
= f ◦ idF (X) = f,

∗
= idG(Y ) ◦g = g

となる。ただし、⋆の箇所で α, β が自然変換であることを用い、∗の箇所で (a)で仮定されている条件を用
いた。以上より P,Qは函手の同型射である。よって (b)が示された。
逆に (b)を仮定する。P : HomC′(F (−), ?) ∼−→ HomC(−, G(?)) を函手の同型射として、Q :==

def
P−1 と置く。

P が函手の射であることは、各射 [f : F (X) → Y ], [f ′ : F (X ′) → Y ] ∈ C′, [g : Y → Y ′] ∈ C′, [h : X →
X ′] ∈ C に対して P(X,Y ′)(g ◦ f) = G(g) ◦ P(X,Y )(f), P(X′,Y )(f

′) ◦ h = P(X,Y )(f
′ ◦ F (h)) となることを意味

する (以下の図式が可換である)：

HomC′(F (X ′), Y )
(−)◦F (h)−−−−−−→ HomC′(F (X), Y )

g◦(−)−−−−→ HomC′(F (X), Y ′)

P(X′,Y )

y P(X,Y )

y yP(X,Y ′)

HomC′(X ′, G(Y ))
(−)◦h−−−−→ HomC(X,G(Y ))

G(g)◦(−)−−−−−−→ HomC(X,G(Y ′)).

Qについても同様の等式が成立する (上の図式で縦向きの射が逆になったものが Qの場合)。次のように自然
変換を定義する：

α(?) :==
def
Q(G(?),?)(idG(?)) : F (G(?))→ (?),

β(−) :==
def
P(−,F (−))(idF (−)) : (−)→ G(F (−)).

すると各 (X,Y ) ∈ Cop × C′ に対して

αF (X) ◦ F (βX) = Q(G(F (X)),F (X))(idG(F (X))) ◦ F (βX)

⋆l
= Q(X,F (X))(idF (X)) ◦ βX)

= Q(X,F (X))(P(X,F (X))(idF (X))) = idF (X)

G(αY ) ◦ βG(Y ) = G(αY ) ◦ P(G(Y ),F (G(Y )))(idF (G(Y )))

⋆r
= P(G(Y ),Y )(αY ◦ idF (G(Y )))

= P(G(Y ),Y )(Q(G(Y ),Y )(idG(Y ))) = idG(Y )

となる。ただし ⋆l,⋆r の箇所で上の図式の可換性を用いた (l は左、r は右側の四角形の可換性を用いてい
る)。以上で (i)の証明を完了する。
(ii)を示す。G,G′ がどちらも F の右随伴であれば、(i)における函手の自然同型を用いて

HomC(−, G(?)) ∼= HomC′(F (−), ?) ∼= HomC(−, G′(?))

となるので、米田の補題によって G ∼= G′ がわかる。左随伴についても同様である。
(iii) を示す。各 Y ∈ C′ について X 7→ HomC′(F (X), Y ) が表現可能であるとし、その表現対象を G(Y )

と置く。すると X について自然な同型 HomC′(F (X), Y ) ∼= HomC(X,G(Y ))を得る。g : Y → Y ′ を任意の
C′ の射とする。すると g を合成することによって函手の射 HomC′(F (−), Y ) → HomC′(F (−), Y ′) を得る。
よって米田の補題によって一意的に射 G(Y )→ G(Y ′)を得る。この射を G(g)と書く。すると Gは函手であ
り、X について自然な同型 HomC′(F (X), Y ) ∼= HomC(X,G(Y ))は構成から Y についても自然である。これ
によって F の右随伴 Gを得る。左随伴に関しても同様である。以上で問題 1.2の解答を完了する。
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問題 1.3. Cを各Homがアーベル群の構造を持ち、0対象を持ち、さらに任意の二つの対象に対する積を持つ圏
とする (cf. [KS, Definition 1.2.1 (i),(ii),(iii)])。このとき、Z ∈ C が函手W 7→ HomC(X,W )⊕HomC(Y,W )

の表現対象であるための必要十分条件は、射 i1 : X → Z, i2 : Y → Z, p1 : Z → X, p2 : Z → Y が存在し、

p2 ◦ i1 = 0, p1 ◦ i2 = 0, p1 ◦ i1 = idX , p2 ◦ i2 = idY , i1 ◦ p1 + i2 ◦ p2 = idZ

となることである。

Proof. 必要性を示す。Z ∈ C が函手W 7→ HomC(X,W ) ⊕ HomC(Y,W ) の表現対象であると仮定する。自
然な全単射 HomC(Z,Z)

∼−→ HomC(X,Z)⊕ HomC(Y, Z) による idZ の送り先を (i1, i2)とする。自然な全単
射 HomC(Z,X)

∼−→ HomC(X,X)⊕ HomC(Y,X) により (idX , 0)へと写る射を p1 : Z → X とし、自然な全
単射 HomC(Z, Y )

∼−→ HomC(X,Y )⊕HomC(Y, Y ) により (0, idY )へと写る射を p2 : Z → Y とする。このと
き、i1, i2, p1, p2 の定義より、

p1 ◦ i1 = idX , p1 ◦ i2 = 0, p2 ◦ i1 = 0, p2 ◦ i2 = idY

であることがわかる。また、

(i1 ◦ p1 + i2 ◦ p2) ◦ i1 = i1 ◦ p1 ◦ i1 + i2 ◦ p2 ◦ i1 = i1 + 0 = i1,

(i1 ◦ p1 + i2 ◦ p2) ◦ i2 = i1 ◦ p1 ◦ i2 + i2 ◦ p2 ◦ i2 = 0 + i2 = i2

であるが、このような性質を満たす射 Z → Z は Z の普遍性によって idZ に限られる。従って i1◦p1+i2◦p2 =

idZ もわかる。以上で必要性の証明を完了する。
十分性を示す。問いの条件を満たす射 i1, i2, p1, p2 が存在すると仮定する。i1, i2, p1, p2 を合成することに
より、W について自然な射

ϕ : HomC(X,W )⊕HomC(Y,W )→ HomC(Z,W ), ϕ(f, g) :==
def
f ◦ p1 + g ◦ p2,

ψ : HomC(Z,W )→ HomC(X,W )⊕HomC(Y,W ), ψ(h) :==
def

(h ◦ i1, h ◦ i2)

を得る。各 f : X →W, g : Y →W,h : Z →W について

ϕ(ψ(h)) = ϕ(h ◦ i1, h ◦ i2) = h ◦ i1 ◦ p1 + h ◦ i2 ◦ p2 = h ◦ (i1 ◦ p1 + i2 ◦ p2) = h ◦ idZ = h

ψ(ϕ(f, g)) = ψ(f ◦ p1 + g ◦ p2) = ((f ◦ p1 + g ◦ p2) ◦ i1, (f ◦ p1 + g ◦ p2) ◦ i2)
= (f ◦ p1 ◦ i1 + g ◦ p2 ◦ i1, f ◦ p1 ◦ i2 + g ◦ p2 ◦ i2) = (f, g)

となるので、ϕ,ψ は全単射である。これは Z が所望の表現対象であることを示している。以上で問題 1.3の
解答を完了する。

問題 1.4. C を加法圏、X → i1Z → p2Y を射の列で、p2 ◦ i1 = 0を満たすとする。このとき、以下の条件が
同値であることを示せ：

(i) 任意の対象W ∈ C に対して次の列は完全である：

0→ HomC(W,X)→ HomC(W,Z)→ HomC(W,Y )→ 0.

(ii) 任意の対象W ∈ C に対して次の列は完全である：

0← HomC(X,W )← HomC(Z,W )← HomC(Y,W )← 0.
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(iii) 射 i2 : Y → Z と p1 : Z → X が存在して、問題 1.3の条件を満たす。

これらの条件が満たされるとき、
0→ X → i1Z → p2Y → 0

は分裂すると言い、X は Z の直和因子であると言う。

(i) C がアーベル圏または三角圏であるとする。i1 : X → Z, p1 : Z → X が p1 ◦ i1 = idX を満たすとき、
X は Z の直和因子となることを示せ。

Proof. はじめに (i), (ii), (iii)が同値であることを確認する。(i)を仮定して (iii)を証明する。W = Y とする
ことで、(i)で仮定されている完全性 (のうちの右側の全射性) より、p2 ◦ i2 = idY となる射 i2 : Y → Z が存
在することがわかる。W = Z とすれば、p2 ◦ (idZ −i2 ◦ p2) = p2 − p2 = 0であることと、(i)で仮定されて
いる完全性 (のうちの真ん中の完全性) より、i1 ◦ p1 = idZ −i2 ◦ p2 となる射 p1 : Z → X が存在することが
わかる。W = X として p1 ◦ i1 : X → X の行き先を見ると、それは

i1 ◦ p1 ◦ i1 = i1 − i2 ◦ p2 ◦ i1 = i1 = i1 ◦ idX

であるので、(i)で仮定されている完全性 (のうちの左側の単射性) より、p1 ◦ i1 = idX であることがわかる。
W = Y として p2 ◦ i1 : Y → X の行き先を見ると、それは i1 ◦ p2 ◦ i1 = 0であるので、(i)で仮定されている
完全性 (のうちの左側の単射性) より、p2 ◦ i1 = 0であることがわかる。以上で (i)から (iii)が帰結すること
がわかった。
(ii)を仮定すれば Cop において Y

p2−→ Z
i1−→ X は条件 (i)を満たすので、すでに証明したことにより Cop に

おいての条件 (iii)が帰結するが、それは C においての条件 (iii)を意味している。以上で (ii)から (iii)が帰結
することがわかった。
(iii)を仮定すると、p1 : Z → X と i2 : Y → Z を用いて各W について函手的な直和分解

HomC(W,Z) ∼= HomC(W,X)⊕HomC(W,Y )

を得るので、これはどんなW についても (i)の列が分裂完全列であることを意味し、Cop で考えることによっ
て (ii)の列が分裂完全列であることもわかる。以上で (i), (ii), (iii)が同値であることが示された。
C がアーベル圏であるときに (i)を証明する。任意のW に対して

0→ HomC(coker(i1),W )→ HomC(Z,W )→ HomC(X,W )

は完全となるが、p1 ◦ i1 であるから、i1 を合成する射 HomC(X,W )→ HomC(Z,W )は一番右の射の分裂を
与え、これによって条件 (ii)が満たされる。以上で C がアーベル圏である場合は証明された。
C が三角圏である場合に (i) を証明する。i1 : X → Z を完全三角 X

i1−→ Z
p2−→ Y → X[1] に延長すると、

任意のW について長い完全列
−−−−→ HomC(W,X) −−−−→ HomC(W,Z) −−−−→ HomC(W,Y )

−−−−→ HomC(W,X[1]) −−−−→ HomC(W,X[1]) −−−−→ · · ·

を得る (HomC(W,−)はコホモロジー函手である：[KS, Proposition 1.5.3 (ii)])。p1 : Z → X を (シフトし
てから) 合成することで、HomC(W,X[i])→ HomC(W,Z[i])の単射性を得る。ここで上の長い列の完全性に
よって、HomC(W,Z)→ HomC(W,Y )の全射性が従う。これによって条件 (i)が満たされる。以上で C が三
角圏である場合も証明された。以上で問題 1.4の解答を完了する。
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問題 1.5. C をアーベル圏、0→ X → Z → Y → 0を完全列とする。X が入射的、または Y が射影的であれ
ば、この完全列は分裂する。

Proof. idX を延長するか、idY を持ち上げるか、をすれば良いだけ (本文の [KS, Definition 1.2.8] の直後の
主張を用いる)。

問題 1.6. C をアーベル圏とする。

(i) f : X → Z, g : Y → Z を射とする。このとき、ker(X ⊕ Y → Z)は函手

W 7→ Hom(W,X)×Hom(W,Z) Hom(W,Y )

の表現対象であることを示せ。この対象を X ×Z Y と表す。
同様に、二つの射 f : Z → X, g : Z → Y が与えられているとき、coker(Z → X ⊕ Y )は函手

W 7→ Hom(X,W )×Hom(Z,W ) Hom(Y,W )

の表現対象であることを示せ。この対象を X
∐
Z Y と表す。

(ii) (i) の状況下で、f ′ : X ×Z Y → Y, g′ : X ×Z Y → X を射影とするとき、自然な射 ker(f ′) →
ker(f), ker(g′)→ ker(g)が存在してそれぞれ同型であることを示せ。

(iii)

X ′ f ′

−−−−→ Y ′

g′
y yg
X

f−−−−→ Y

を可換図式とする。このとき、以下の条件は同値であることを示せ：
(a) 自然な射 X ′ → X ′ ×Y Y ′ はエピである。
(b) X

∐
X′ Y ′ → Y はモノである。

(c) 次はすべて完全である：

0 ker(f ′)×X′ ker(g′) ker(g′) ker(g) 0,

0 ker(f ′)×X′ ker(g′) ker(f ′) ker(f) 0,

0 coker(f ′) coker(f) coker(f) tY coker(g) 0,

0 coker(g′) coker(g) coker(f) tY coker(g) 0.

(iv) f : X → Y を Ch(C)の射とする。各 nについて、可換図式

coker(dn−1
X ) −−−−→ Xn+1y y

coker(dn−1
Y ) −−−−→ Y n+1

が (iii)の同値な条件を満たすとする。このとき f は擬同型であることを示せ。

Proof. (i)は自明である。
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(ii) を f 側のみ示す。核の普遍性から自然な射 ker(f ′) → ker(f) が存在する。これが同型であることを
示せば良い。まず C がアーベル群の圏である場合に自然な射 ker(f ′) → ker(f) が同型射であることを示
す。(x, y) ∈ X ×Z Y が f ′(x, y) = 0 を満たし、さらに ker(f) での像（これは x に等しい）が 0 であれ
ば、0 = f ′(x, y) = y であるから (x, y) = (0, 0) がわかり、従って ker(f ′) → ker(f) は単射である。任意の
x ∈ ker(f)に対して (x, 0) ∈ X × Y はX ×Z Y に属しているので、ker(f ′)→ ker(f)は全射である。以上よ
り C がアーベル群の圏である場合には主張が示された。
一般のアーベル圏 C の場合に ker(f ′) → ker(f) が同型射であることを証明をする。W を任意にとり、

fW : Hom(W,X) → Hom(W,Z), f ′W : Hom(W,X ×Z Y ) → Hom(W,Y ) を f, f ′ を合成することにより
得られる射とする。このとき Hom(W,X ×Z Y ) ∼= Hom(W,X) ×Hom(W,Z) Hom(W,Y ) であるから、C が
アーベル群の場合の結果より、自然な射 ker(f ′W ) → ker(fW )は同型射である。従って、米田の補題により、
ker(f ′)→ ker(f)も同型射である。以上で一般のアーベル圏の場合も証明ができた。
(iii)を証明する。まず (b)を仮定して (a)を証明する。Z :==

def
X
∐
X′ Y とおく。射 Z → Y

g←− Y ′ があるの
で、Z ′ :==

def
Z ×Y Y ′ ができる。このとき、pull-backの普遍性により、Z ′ ×Z X ∼= X ×Y Y ′ となる：

Z ′ ×Z X −−−−→ Z ′ −−−−→ Y ′y y y
X −−−−→ Z −−−−→ Y.

上の可換図式の左側に (ii) を用いることで、ker(Z ′ → Y ′) ∼= ker(Z → Y ) であることがわかる。仮定より
ker(Z → Y ) = 0であるから、Z ′ → Y ′ はモノ射である。Z :==

def
X
∐
X′ Y ′ であるから、射 Y ′ → Z があり、

これによって Z ′ → Y ′ のレトラクト Y ′ → Z ′ を得る (合成 Y ′ → Z ′ → Y ′ は id)。Z ′ → Y ′ がモノ射である
ことから、レトラクトの存在より、Z ′ → Y ′ は同型射でなければならない。よって、射 X ′ → X ×Y Y ′ が
エピであることを示すためには、X ′ → X ×Z Y ′ がエピであることを示すことが十分である。しかし、構成
より、

X ×Z Y ∼= ker(X ⊕ Y → Z) ∼= ker(X ⊕ Y → coker(X ′ → X ⊕ Y )) ∼= Im(X ′ → X ⊕ Y )

となる。これは X ′ → X ⊕Z Y がエピであることを示している。以上で (b)⇒(a) が証明された。Cop で考え
ることにより、(a)⇒(b) がわかる。以上で (a)⇔(b) がわかった。
(a)と (b)を仮定して (c)を証明する。ϕ : X ′ → X×Y Y ′と置く。任意に射 h :W → X ′をとる。X×Y Y ′

の定義より、

ϕ ◦ h = 0.

⇔ f ′ ◦ h = 0かつ g′ ◦ h = 0.

⇔ hは ker(f ′)と ker(g′)の両方を経由する。
⇔ hは ker(f ′)×X′ ker(g′)を経由する。

となる。従って自然に ker(ϕ) ∼= ker(f ′)×X′ ker(g′)となる。Copで考えることで、自然に coker(X
∐
X′ Y ′ →

Y ) ∼= coker(f)
∐
Y coker(g) となることがわかる。

図式
X ′ φ−−−−→ X ×Y Y ′

g′
y y
X X
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について考える。(ii)を用いることで、ker(X ×Y Y ′ → X) ∼= ker(g)であることがわかる。二重に添字付け
られた図式の極限が交換することにより、kerが交換して、

ker(f ′)×X′ ker(g′) ∼= ker(ϕ) ∼= ker(ker(ϕ)→ 0) ∼= ker(ker(g′)→ ker(g))

がわかる。f 側でも同じことをすることによって、

0 −−−−→ ker(f ′)×X′ ker(g′) −−−−→ ker(g′) −−−−→ ker(g),

0 −−−−→ ker(f ′)×X′ ker(g′) −−−−→ ker(f ′) −−−−→ ker(f),

が完全であることがわかった。Cop で考えることで、

coker(f ′) −−−−→ coker(f) −−−−→ coker(f)
∐
Y coker(g) −−−−→ 0,

coker(g′) −−−−→ coker(g) −−−−→ coker(f)
∐
Y coker(g) −−−−→ 0,

が完全であることがわかる (ここまで (a)と (b)を使っていない)。
ker(g′) → ker(g) がエピであることを証明すれば、g と f を入れ替えることによって ker(f ′) → ker(f)

がエピであることがわかり、Cop で考えることで coker の方のモノ性も従う。なので ker(g′) → ker(g) が
エピであることを示すことが残っていることである。(ii) より ker(g) ∼= ker(X ×Y Y ′ → X) であるから、
ker(g′)→ ker(g)がエピであることを示すためには、可換図式

X ′ −−−−→ X ×Y Y ′

g′
y y
X X

で ker(g′) → ker(X ×Y Y ′ → X) が ker(g′) → ker(g) がエピであることを示すことが十分である。よっ
て Y = X, f = idX であり、f ′ はエピであると仮定しても一般性を失わない。また、Im(g) をとっても
ker は変わらないので、g もエピであると仮定しても一般性を失わない。このとき X ′ の部分対象として
ker(f ′) ⊂ ker(g′)であるので、X ′, ker(g′)を ker(f ′)で割ることによって、完全列の間の射

0 −−−−→ ker(g′)/ ker(f ′) −−−−→ X ′/ ker(f ′)
g′−−−−→ X −−−−→ 0y y ∥∥∥

0 −−−−→ ker(g) −−−−→ Y ′ −−−−→ X −−−−→ 0

を得る。ここで真ん中の射X ′/ ker(f ′)→ Y ′ は f ′ がエピであることによってエピ射である。従って縦向き真
ん中の射と縦向き右端の射が同型であることがわかった。射の圏において同型な二つの射の核は当然同型であ
るから、縦向き左端の射が同型であることがわかる。これは ker(g′)→ ker(g)がエピであることを意味する。
以上で (a)と (b)を仮定することで (c)が従うことがわかった。
(c)を仮定して (a)を示す部分が残っている。(c)を仮定する。ker(f ′)×X′ ker(g′) ∼= ker(ϕ : X ′ → X ×Y

Y ′) となることはすでに示している。ker(ϕ : X ′ → X ×Y Y ′)で X ′ を割ることで、ker(f ′)×X′ ker(g′) = 0

であると仮定しても一般性を失わない。p : X ×Y Y ′ → Y ′ を自然な射影とする。可換図式

X ×Y Y ′ p−−−−→ Y ′y yg
X

f−−−−→ Y
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にすでに示した「(a)⇒(c)」を適用することで、自然な射 coker(p)→ coker(f)はモノ射であることがわかる。
また、図式

X ′ f ′

−−−−→ Y ′

φ

y ∥∥∥
X ×Y Y ′ p−−−−→ Y ′

が可換であることから、

coker(coker(f ′)→ coker(p)) ∼= coker(coker(ϕ)→ coker(idY ′)) = 0

となるので、coker(f ′)→ coker(p)はエピである。今 (c)を仮定しているので、合成 coker(f ′)→ coker(p)→
coker(f) はモノ射であり、従ってとくに coker(f ′) → coker(p) もモノ射である。このことは、coker(f ′) →
coker(p)が同型射であることを意味する。従って図式

Y ′ −−−−→ coker(f ′)∥∥∥ y∼=

Y ′ −−−−→ coker(p)

は Cartesianであり、(ii)を適用することで、自然な射

Im(f ′) = ker(Y ′ → coker(f ′))
∼−→ ker(Y ′ → coker(p)) = Im(p)

は同型射であることがわかる。(ii) より、自然な射 ker(f)
∼−→ ker(p) は同型であるので、以下の可換図式を

得る：
0 −−−−→ ker(f ′)

i−−−−→ X ′ f ′

−−−−→ Im(f ′) −−−−→ 0

∼=
y φ

y y∼=

0 −−−−→ ker(p)
j−−−−→ X ×Y Y ′ p−−−−→ Im(p) −−−−→ 0,

ただしここで横向きはすべて完全であり、i : ker(f ′) → X ′, j : ker(p) → X ×Y Y ′ は自然なモノ射である。
ϕ̄ : Im(f ′)

∼−→ Im(p) と置く。任意に射 h : X ×Y Y ′ → Z を取って、h ◦ ϕ = 0 であると仮定する。ϕ が
エピであることを示すには、h = 0 を証明することが十分である。このとき h ◦ ϕ ◦ i = 0 であることと、
ker(f ′) ∼= ker(p)であることと、上の図式が可換であることにより、h ◦ j = 0がわかる。従って h = h′ ◦ pと
なる射 h′ : Im(p)→ Z が存在する。h′ ◦ ϕ̄ ◦ f ′ = h′ ◦ p ◦ ϕ = h ◦ ϕ = 0 であることと、f ′ がエピであること
から、h′ ◦ ϕ̄ = 0であるが、ϕ̄は同型射であるので、h′ = 0がわかる。以上より h = h′ ◦ p = 0である。以上
で (iii)の証明を完了する。
(iv)を示す。まず coker(dn−1

X ) ∼= Xn/ Im(dn−1
X )であることから Hn(X) ∼= ker(coker(dn−1

X )→ Xn+1)で
ある。可換図式

coker(dn−1
X ) −−−−→ Xn+1y yfn+1

coker(dn−1
Y ) −−−−→ Y n+1

に (iii) (c) を使うことで、Hn(f) : Hn(X) → Hn(Y ) は各 n でエピであることがわかる。また、
coker(coker(dn−1

X ) → Xn+1) ∼= coker(dnX) であるから、上の可換図式に再び (iii) (c) を使うことで、
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coker(dnX) → coker(dnY ) は各 n でモノであることがわかる。特に coker(dn−1
X ) → coker(dn−1

Y ) もモノであ
り、従って上の可換図式に再び (iii) (c)を使うと

ker(Hn(f)) ∼= ker(ker(coker(dn−1
X )→ coker(dn−1

Y ))→ ker(fn+1)) = 0

がわかる。以上より Hn(f)は各 nでモノ射である。Hn(f)はエピだったので、Hn(f)は同型射となる。こ
のことは f が擬同型であることを意味する。以上で問題 1.6の証明を完了する。

問題 1.7. C をアーベル圏とする。

(i) Z ∈ C を対象とする。圏 P(Z)を次で定義する：
• 対象はエピ射 f : X → Z である。
• 二つの対象 f : X → Z と g : Y → Z の間の射 (f : X → Z) → (g : Y → Z) は C のエピ射
h : X → Y であって f ◦ h = g となるものである。

• 合成は C の合成によって定義する。
このとき、P(Z)は cofilteredであることを示せ。

(ii) 対象 X ∈ C に対し、h̃Z(X) :==
def

colimZ′∈P(Z) HomC(Z
′, X) とおく。以下を示せ：

(a) 函手 h̃Z : C → Abは完全函手である。
(b) f, f ′ ∈ HomC(X,X

′) を二つの射とする。任意の Z ∈ C に対して h̃Z(f) = h̃Z(f
′) が成り立つと

き、f = f ′ である。
(c) すべての対象 Z ∈ C に対する h̃Z での像が Abにおいて完全であるような C の列は完全である。

注意. [KS]第一版では、(i)の問題文は次のように表記されている (引用)：
For an object Z of C, let P(Z) be the category whose objects are the epimorphisms f : Z ′ → Z, a

morphism (f : Z ′ → Z) → (f ′ : Z ′′ → Z) being defined by h : Z ′ → Z ′′ with f ′ ◦ h = f . Prove that

P(Z) is cofiltrant, that is, P(Z)◦ is filtrant.

この文章をそのまま読むと、圏P(Z)は、Z への射がエピとなるものたちからなる圏 C/Z の充満部分圏で
あると読める (というか、この文章は hもエピであることが想定されているようには読めないと思う)。しか
し、このように読むと、P(Z)は cofilteredにはならない。たとえば、k を標数が 2でない体、C を k-線形空
間の圏、Z = kとして、C/k の対象として p :==

def
idk : X :==

def
k → Z と q :==

def
pr1 : Y :==

def
k× k → Z を考え、p, q

の間の射として f1 : X → Y を f1(a) = (a, a)で定め、f2 : X → Y を f2(a) = (a,−a)で定める。このとき、
線形空間 V と射 g : V → X が f1 ◦ g = f2 ◦ g を満たせば、g が 0-射であることが容易に従う (標数が 2でな
いことを用いる)。従って、とくに、g はエピとはならず、従って、g : V → k はP(Z)の対象となることは
決してない。このことはP(Z)op が [KS, Definition 1.11.2 (1.11.2)]を満たさない (とくに cofilteredではな
い) ことを示している。

Proof. (i) を示す。P(Z) の図式 h1 : (f1 : X1 → Z) → (g : Y → Z) ← (f2 : X2 → Z) : h2 を任
意にとって、fiber 積 X1 ×Y X2 を考える。pi : X1 ×Y X2 → Xi, (i = 1, 2) を射影とする。このとき、
f1 ◦ p1 = g ◦ h1 ◦ p1 = g ◦ h2 ◦ p2 = f2 ◦ p2 であるから、f :==

def
f1 ◦ p1 とすれば、f : X1 ×Y X2 → Z は圏

C/Z における fiber積となる。P(Z)は終対象 idZ : Z → Z を持つので、従って、P(Z)が cofilteredである
ことを示すためには、f : X1 ×Y X2 → Z がエピ射であることを示すことが十分である。問題 1.6 (iii)より、
エピ射の pull-backはエピ射であるから、pi はエピ射であり、エピ射の合成はエピ射であるから、f = f1 ◦ p1
もエピ射である。以上で (i)の解答を完了する。
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(ii) (a) を示す。集合の間の写像の圏において、単射の filered colimit は単射である。従って h̃Z は左
完全函手である。残っているのは h̃Z の右完全性を証明することである。g : X1 → X3 を C のエピ射と
し、r̃3 ∈ h̃Z(X3) を任意にとる。r̃3 の代表元を r3 : Z3 → X3 とする。ここで Z3 はある P(Z) の対象
z3 : Z3 → Z の domainであり、r3 : Z3 → X3 は C の射である。図式 r3 : Z3 → X3 ← X1 : g の fiber積を
Z1 とし、射影を h : Z1 → Z3, r1 : Z1 → X1 とする。エピ射の pull-backはエピ射であるから、hはエピであ
る。従って、z1 :==

def
z3 ◦ h : Z1 → Z は P(Z)の対象であり、hは P(Z)の射である。さらに、g ◦ r1 = r3 ◦ h

であるから、r1 : Z1 → X1 により代表される元 r̃1 ∈ h̃Z(X1)は射 h̃Z(X1) → h̃Z(X3)により r̃3 へと写る。
従って h̃Z(X1)→ h̃Z(X3)は全射である。以上で (ii) (a)の解答を完了する。
(ii) (b) を示す。f, f ′ : X → X ′ が任意の Z ∈ C に対して h̃Z(f) = h̃Z(f

′) を満たしていると仮定する。
Z = X として、idX : X → X により代表される元を ĩ ∈ h̃Z(X)、f, f ′ : X → X ′ により代表される元を
f̃ , f̃ ′ ∈ h̃Z(X ′)とする。このとき、

f̃ = h̃Z(f) ◦ ĩ = h̃Z(f
′) ◦ ĩ = f̃ ′

となる。P(Z)の各射はエピなので、自然な射 HomC(Z,X) → h̃Z(X)は単射である。従って、等式 f̃ = f̃ ′

は f = f ′ であることを意味する。以上で (ii) (b)の解答を完了する。
(ii) (c)を示す。C を離散圏 (射が idしかない圏) とみなした圏を C̄ とおく。C̄ から Abへの (加法的とは限
らない) 函手のなす圏 [C̄,Ab] はアーベル圏である。h̃ : C → [C̄,Ab], X 7→ [Z 7→ h̃Z(X)] はアーベル圏の間
の加法的函手である。(ii) (a) より、各 h̃Z は完全函手であるから、h̃ も完全函手である。(ii) (b) より h̃ は
忠実である。従って、(ii) (c) を示すためには、アーベル圏の間の忠実な完全函手 F : C → D と C の射の列
X

f−→ Y
g−→ Z に対して、X f−→ Y

g−→ Z が C で完全であることと F (X)
F (f)−−−→ F (Y )

F (g)−−−→ F (Z) が D で
完全であることが同値であることを証明することが十分である。F は忠実なので、g ◦ f = 0 であることと
F (g) ◦ F (f) = 0であることは同値である。F は完全函手なので、Im(F (f))と F (Im(f))は自然に同型であ
り、ker(F (g))と F (ker(g))も自然に同型である。さらに F は忠実なので、自然な射 Im(f)→ ker(g)が同型
であることは F での像 F (Im(f))→ F (ker(g))が同型であることと同値である。よって、X f−→ Y

g−→ Z が C
で完全であることと F (X)

F (f)−−−→ F (Y )
F (g)−−−→ F (Z)が D で完全であることは同値である。以上で問題 1.7の

証明を完了する。

問題 1.8 (The Five Lemma). C をアーベル圏とする。C の可換図式

X0 −−−−→ X1 −−−−→ X2 −−−−→ X3 −−−−→ X4

f0

y f1

y f2

y f3

y f4

y
Y 0 −−−−→ Y 1 −−−−→ Y 2 −−−−→ Y 3 −−−−→ Y 4

について以下の主張を証明せよ。ただし横向きは完全であるとする。

(i) f0 がエピであり、f1, f3 がモノであれば、f2 はモノである。
(ii) f4 がモノであり、f1, f3 がエピであれば、f2 はエピである。

Proof. 問題 1.7によって Abでの主張と見做して良く、この場合、主張は初等的である。
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問題 1.9. C をアーベル圏とする。

X
f−−−−→ Y

g−−−−→ Z −−−−→ 0

α

y yβ yγ
0 −−−−→ X ′ f ′

−−−−→ Y ′ g′−−−−→ Z ′

を C の可換図式で、横向きが完全であるものとする。

(i) 自然な射 ϕ : ker(γ)→ coker(α)が存在して、以下が完全となることを示せ：

ker(α)→ ker(β)→ ker(γ)
φ−→ coker(α)→ coker(β)→ coker(γ).

(ii) 以下の図式が可換であることを示せ：

Y
g−−−−→ Zx x

Y ←−−−− ker(γ ◦ g) −−−−→ ker(γ)y y yφ
Y ′ f ′

←−−−− X ′ −−−−→ coker(α).

Proof. ϕの構成ができれば、問題 1.7によって (i)は C = Abの場合に帰着され、この場合は図式追跡によっ
て初等的に証明できる。従って、(i)を示すためには ϕを構成することが十分である。以下、ϕの構成と (ii)

の証明を同時に行う。
核の普遍性により、以下の図式を可換にするような射 ψ1 : ker(γ ◦ g)→ ker(γ)が一意的に存在する：

0 −−−−→ ker(γ ◦ g) −−−−→ Y
γ◦g−−−−→ Z ′

ψ1

y yg ∥∥∥
0 −−−−→ ker(γ) −−−−→ Y ′ γ−−−−→ Z ′.

これは (ii)の図式の右上の四角形の可換性を示している。また、問題 1.8 (ii)より、ψ1 はエピである。核の普
遍性により、以下の図式を可換にするような射 ψ2 : ker(γ ◦ g)→ X ′ が一意的に存在する：

0 −−−−→ ker(γ ◦ g) −−−−→ Y
γ◦g−−−−→ Z ′

ψ2

y yβ ∥∥∥
0 −−−−→ X ′ f ′

−−−−→ Y ′ g′−−−−→ Z ′.

これは (ii) の図式の左下の四角形の可換性を示している。自然な射 X ′ → coker(α) と ψ2 の合成を ψ3 :

ker(γ ◦ g) → coker(α) と置く。ker(ψ1) → ker(γ ◦ g) ψ3−−→ coker(α) の合成が 0-射であることが証明できれ
ば、ψ1 がエピであることから、ψ3 は ψ1 を一意的に経由して、図式

ker(γ ◦ g) ψ1−−−−→ ker(γ)

ψ2

y yφ
X ′ −−−−→ coker(α)
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を可換にする射 ϕの存在が従う ((ii)の図式の右下の四角形の可換性の証明と ϕの構成が同時に終わる)。
p : X → Im(f)を自然なエピ射、j1 : Im(f) ∼= ker(g)→ Y を自然なモノ射とする。このとき f = j1 ◦ pで
ある。核の普遍性により引き起こされる一意的な射を α′ : Im(f) ∼= ker(g)→ X ′ と置く。

f ′ ◦ α = β ◦ f = β ◦ j1 ◦ p = f ′ ◦ α′ ◦ p

であることと f ′ がモノであることから、α = α′ ◦ p となる。q : X ′ → coker(α) を自然な射とすると、
q ◦ α′ ◦ p = q ◦ α = 0 となるが、p がエピであることから、q ◦ α′ = 0 となる。T :==

def
ker(ψ1) とおき、

i : T → ker(γ ◦ g) を自然な射、j2 : ker(γ ◦ g) → Y を自然なモノ射とする。ψ1 ◦ i = 0 であるから、
g ◦ j2 ◦ i = 0である。よって、核の普遍性により、一意的な射 k : T → Im(f)が存在して、j1 ◦ k = j2 ◦ iと
なる。以上より、

f ′ ◦ ψ2 ◦ i = β ◦ j2 ◦ i = β ◦ j1 ◦ k = f ′ ◦ α′ ◦ k

となる。f ′ はモノなので ψ2 ◦ i = α′ ◦ kとなる。従って、q ◦ ψ2 ◦ i = q ◦ α′ ◦ k = 0 となって、示すべき等式
を得る。以上で問題 1.9の証明を完了する。

問題 1.10. C をアーベル圏とする。図式
0 −−−−→ M −−−−→ M0 −−−−→ M1 −−−−→ 0∥∥∥
0 −−−−→ M −−−−→ M ′

0 −−−−→ M ′
1 −−−−→ 0

において、横向きは完全であり、M0,M
′
0 はそれぞれ入射的であるとする。同型射M0 ⊕M ′

1
∼−→M ′

0 ⊕M1 を
構成せよ。

Proof. N :==
def
M0

∐
M M ′

0 とおいて、j : M0 → N ← M ′
0 : j′ を自然な射とする。i, i′ はモノ射であるから、

item (iii)より、その push-outである j, j′ もそれぞれモノ射である。従って、M0 が入射的であることから、
ある射 p : N →M0 が存在して p ◦ j = idM0

となり、M ′
0 が入射的であることから、ある射 p′ : N →M ′

0 が
存在して p′ ◦ j′ = idM ′

0
となる。図式

M −−−−→ M0 −−−−→ M1y j

y y
M ′

0
j′−−−−→ N −−−−→ Xy y

M ′
1 −−−−→ Y

に Cop で item (ii) を適用すると、射M1 → X とM ′
1 → Y はそれぞれ同型射であることがわかる。以上よ

り、二つの完全列
0 −−−−→ M0

j−−−−→ N −−−−→ M ′
1 −−−−→ 0

0 −−−−→ M ′
0

j′−−−−→ N −−−−→ M1 −−−−→ 0

を得る。j, j′ は分裂モノ射であるから、問題 1.4より、同型射M0 ⊕M ′
1
∼= N ∼=M ′

0 ⊕M1 を得る。以上で問
題 1.10の証明を完了する。

問題 1.11. C をアーベル圏、X ∈ Ch(C) を複体であって、任意の Y ∈ C に対してアーベル群の複体
HomC(Y,X)が完全であるものとする。このとき X は K(C)で 0であることを示せ。
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Proof. HomC(Y,−)は左完全函手であるから、任意の nに対して、自然に

HomC(Y, ker(d
n
X))

∼−→ ker(dnX ◦ (−) : HomC(Y,X
n)→ HomC(Y,X

n+1))

となる。HomC(Y,X)は完全であるから、任意の nに対して、自然に

HomC(Y, Im(dnX)) ∼= HomC(Y, ker(d
n+1
X )) ∼= ker(dn+1

X ◦ (−)) ∼= Im(dnX ◦ (−))

となる。従って、任意の nに対して、自然な射 Im(dnX ◦ (−))→ HomC(Y, Im(dnX)) は同型射であり、任意の
nに対して、完全列

0 −−−−→ ker(dnX) −−−−→ Xn −−−−→ Im(dnX) −−−−→ 0

に HomC(Y,−) を施した後のアーベル群の列も完全である。よって問題 1.4 より、任意の n に対して、
Xn ∼= Im(dnX)⊕ ker(dnX)となることが従う。
X が K(C) において 0 であるためには、idX : X → X が homotopic to zero であることが十分である。

sn : Xn → Xn−1を、ker(dnX)→ Xnの分裂 pn : Xn → ker(dnX)と、同型射 ln : Im(dn−1
X )

∼−→ ker(dnX)の逆射
と、Xn−1 → Im(dn−1

X )の分裂 in−1 : Im(dn−1
X )→ Xn−1の、三つの射の合成射として sn :==

def
in−1◦(ln)−1◦pn

と定める。このとき、sn+1 ◦ dnX : Xn → Xn は自然なエピ射 Xn → Im(dnX)と in : Im(dnX) → Xn の合成
射に等しく、dn−1

X ◦ sn : Xn → Xn は pn : Xn → ker(dnX)と自然なモノ射 ker(dnX) → Xn の合成射に等し
い。従って idXn = sn+1 ◦ dnX + dn−1

X ◦ sn となり、idX は homotopic to zero であることがわかる。以上で問
題 1.11の解答を完了する。

問題 1.12. C を三角圏とし、
X −−−−→ Y −−−−→ Z −−−−→ X[1]∥∥∥ ∥∥∥ y ∥∥∥
X −−−−→ Y −−−−→ Z ′ −−−−→ X[1]

を C の可換図式で、上の列が完全三角であるものとする。このとき、以下の条件のうちの一方が成り立つと
き、下の列も完全三角であることを示せ：

(i) 任意の対象 P ∈ C に対して、以下の列は完全である：

Hom(P,X)→ Hom(P, Y )→ Hom(P,Z ′)→ Hom(P,X[1]).

(ii) 任意の対象 Q ∈ C に対して、以下の列は完全である：

Hom(X,Q)← Hom(Y,Q)← Hom(Z ′, Q)← Hom(X[1], Q).

Proof. Hom(P,−) と Hom(−, Q) はそれぞれ cohomological functor であるから、(i) を仮定すれば、射
Hom(P,Z)→ Hom(P,Z ′)は同型射であることが従い、(ii)を仮定すれば、射 Hom(Z ′, Q)→ Hom(Z,Q)は
同型射であることが従う。すると、米田の補題より、(i)と (ii)のいずれかを仮定すれば、射 Z → Z ′ は同型
射であることが従う。C は三角圏なので、[KS, Proposition 1.4.4 (TR0)]を満たし、従って所望の完全性を得
る。

問題 1.13. C を三角圏、Xi → Yi → Zi → Xi[1], (i = 1, 2)を C の二つの三角形とする。これら二つの三角
形が完全三角であるためには、三角形

X1 ⊕X2 → Y1 ⊕ Y2 → Z1 ⊕ Z2 → X1[1]⊕X2[1]
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が完全三角であることが必要十分である、ということを示せ。

Proof. 必要性を証明する。二つの三角形 Xi → Yi → Zi → Xi[1], (i = 1, 2) が完全三角であるとする。
M :==

def
M(X1 ⊕X2 → Y1 ⊕ Y2)と置く (mapping cone)。自然な射 X1 ⊕X2 → Xi と Y1 ⊕ Y2 → Yi により

可換図式
X1 ⊕X2 −−−−→ Y1 ⊕ Y2y y

Xi −−−−→ Yi

を得る。よって、(TR4)より、ある射M → Zi が存在して、これらが完全三角の間の射を形成する。二つの
射M → Z1,M → Z2 により、射M → Z1 ⊕ Z2 ができて、可換図式

X1 ⊕X2 −−−−→ Y1 ⊕ Y2 −−−−→ M −−−−→ X1[1]⊕X2[1]∥∥∥ ∥∥∥ y ∥∥∥
X1 ⊕X2 −−−−→ Y1 ⊕ Y2 −−−−→ Z1 ⊕ Z2 −−−−→ X1[1]⊕X2[1]

を得る。任意に P ∈ C を取って、函手 Hom(P,−) を適用すると、各 Hom(P,Xi) → Hom(P, Yi) →
Hom(P,Zi)→ Hom(P,Xi[1])は完全であるから、

Hom(P,X1 ⊕X2)→ Hom(P, Y1 ⊕ Y2)→ Hom(P,Z1 ⊕ Z2)→ Hom(P,X1[1]⊕X2[1])

も完全である。よって問題 1.12より

X1 ⊕X2 → Y1 ⊕ Y2 → Z1 ⊕ Z2 → X1[1]⊕X2[1]

も完全三角であることが従う。以上で必要性の証明を完了する。
十分性を証明する。

X1 ⊕X2 → Y1 ⊕ Y2 → Z1 ⊕ Z2 → X1[1]⊕X2[1]

が完全三角であると仮定する。Mi :==
def
M(Xi → Yi)と置く。自然な射 Xi → X1 ⊕X2 と Yi → Y1 ⊕ Y2 によ

り可換図式
Xi −−−−→ Yiy y

X1 ⊕X2 −−−−→ Y1 ⊕ Y2
を得る。よって、(TR4) より、ある射Mi → Z1 ⊕ Z2 が存在して、これらが完全三角の間の射を形成する。
自然な射 X1 ⊕X2 → Xi, Y1 ⊕ Y2 → Yi, Z1 ⊕ Z2 → Zi と合成することで、可換図式

Xi −−−−→ Yi −−−−→ Mi −−−−→ Xi[1]∥∥∥ ∥∥∥ y ∥∥∥
Xi −−−−→ Yi −−−−→ Zi −−−−→ Xi[1]

を得る。任意に P ∈ C を取って函手 Hom(P,−)を適用する。

X1 ⊕X2 → Y1 ⊕ Y2 → Z1 ⊕ Z2 → X1[1]⊕X2[1]

が完全三角であることから、

Hom(P,X1 ⊕X2)→ Hom(P, Y1 ⊕ Y2)→ Hom(P,Z1 ⊕ Z2)→ Hom(P,X1[1]⊕X2[1])
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は完全であり、従って各 i = 1, 2に対して

Hom(P,Xi)→ Hom(P, Yi)→ Hom(P,Zi)→ Hom(P,Xi[1])

も完全である。よって問題 1.12より Xi → Yi → Zi → Xi[1]も完全三角であることが従う。以上で十分性の
証明を完了し、問題 1.13の解答を完了する。

問題 1.14. C を圏、S を積閉系とする。対象 X ∈ C に対して、圏 SX を次で定義する：

• SX の対象は S に属する射 s : X ′ → X である。
• 対象 s : X ′ → X から対象 s′ : X ′′ → X への射は、C の射 h : X ′′ → X ′ であって s′ = s ◦ hとなるも
のとして定義する (C の射の向きとは逆向きであることに注意)。

このとき、以下を証明せよ：

(i) SX は filteredである。
(ii) X,Y ∈ C を対象とする。このとき、以下が成り立つ：

HomCS
(X,Y ) = colim

X′∈SX

HomC(X
′, Y ).

(iii) 射を逆向きにすることで圏 SaY を定義し、次が成り立つことを示せ：

HomCS
(X,Y ) = colim

Y ′∈Sa
Y

HomC(X,Y
′).

注意. 第一版の本文では、(i)は、(SX)op が filteredであることを示す問題となっているが、これは誤植であ
ると思われる。なお、(SX)op が filteredであることは、終対象 idX : X → X を持つことから自明である。

Proof. (i) を示す。Sop
X が cofiltered であることを証明すれば良い。[s1 : X1 → X], [s2 : X2 → X] を Sop

X

の対象とする。すると本文 [KS, Definition 1.6.1 (S3)] より、ある S に属する射 t : W → X1 と C の射
f : W → X2 が存在して s1 ◦ t = s2 ◦ f となる。s1, t ∈ S なので、本文 [KS, Definition 1.6.1 (S2)] より、
u :==

def
s1 ◦ t ∈ S である。従って、[u : W → X]は Sop

X の対象であり、f, tは Sop
X の射である。よって SX は

本文の条件 [KS, Definition 1.11.2 (1.11.1)]を満たす。
次に、[s1 : X1 → X], [s2 : X2 → X]を Sop

X の対象とし、f1, f2 : s1 → s2 を Sop
X の二つの射とする。この

とき、s2 ◦ f1 = s2 ◦ f2 であるから、本文 [KS, Definition 1.6.1 (S4)] より、S に属するある射 t : Y → X1

が存在して、f1 ◦ t = f2 ◦ tとなる。u :==
def
s1 ◦ tとすれば、本文 [KS, Definition 1.6.1 (S2)]より u ∈ S であ

るから、[u : Y → X] は Sop
X の対象であり、t : u → s1 は Sop

X の射である。よって SX は本文の条件 [KS,

Definition 1.11.2 (1.11.2)]を満たす。以上で (i)の証明を完了する。
(ii)を示す。

T :==
def {(X ′, s, f)|X ′ ∈ C, [s : X ′ → X] ∈ S, f : X ′ → Y }

と置く (本文 [KS, Definition 1.6.2 (S3)]の Hom集合の定義式の割る前の集合) と、

T =
∐

[s:X′→X]∈SX

HomC(X
′, Y )

である。また、f ∈ HomC(X
′, Y ), g ∈ HomC(X

′′, Y ) に対して本文 [KS, Definition 1.6.2] で定義されて
いる関係は、ある SX の射 X ′ → X ′′′ ← X ′′ が存在して、f, g は HomC(X

′′′, Y ) において等しい、とい
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うことを意味している。従って、集合の圏における余極限の具体的な構成を思い出すと、HomCS
(X,Y ) =

colimX′∈SX
HomC(X

′, Y )となることがわかる。以上で (ii)の証明を完了する。
(iii) を示す。SaY :==

def
((Sop)Y )

op とおく。ただし Sop は S に対応する圏 Cop の積閉系である。(i) より
(Sop)Y は cofilteredであるから、((Sop)Y )

op は filteredである。また (ii)より

HomCop
Sop

(Y,X) = colim
Y ′∈(Sop)Y

HomCop(Y ′, X)

である。opをとれば、
Hom(Cop

Sop )op(X,Y ) = colim
Y ′∈Sa

Y

HomC(X,Y
′)

であることが従う。(CopSop)op = CS であること (cf. 本文 [KS, Remark 1.6.4]) に注意すれば、所望の等式を得
る。以上で (iii)の証明を完了し、問題 1.14の解答を完了する。

問題 1.15. C を圏とする。c ∈ C に対して、hCc :==
def

HomC(−, c)を米田埋め込み C → SetC
op による c ∈ C の

像とする (C が明らかな場合は上付き添字の C を省略してたんに hc と表す)。Ind(C)を SetC
op の充満部分圏

であって、ある filtered diagram F : I → C に対する colimi∈I hF (i) と同型な対象たちからなるものとする。
C をさらにアーベル圏であるとして、SX を over category CX/ の充満部分圏であって、擬同型X → X ′ た
ちからなるものとする。

(i) σ(X) :==
def

colimX′∈SX
hX′ によって函手 σ : D+(C) → Ind(K+(C)) が well-defined に定まることを示

し、σ が忠実充満であることを示せ。
(ii) F : C → C′ をアーベル圏の間の左完全函手とする。T (X) :==

def
colimX′∈SX

hC
′

F (X′) と定める。これ
によって函手 T : D+(C) → Ind(K+(C′)) が well-defined に定まることを示せ。F が X ∈ D+(C) で
derivableであるということを、ある対象 Y ∈ D+(C′)が存在して T (X) ∼= σ(Y )となることとして定
義する。このような Y が (up to isomで) 一意的であることを示せ。また、F がすべての X ∈ D+(C)
で derivableであるときに、函手 RF : D+(C)→ D+(C′)で σ ◦RF ∼= T となるものが (up to isomで)

一意的に存在することを示せ (すなわち、F は右導来函手 RF を admitsする)。

Proof. (i)の函手 σ の well-defined性は (ii)の函手 T の well-defined性の特別な場合 (F = idC の場合) であ
るので、まず (ii)の函手 T が well-definedに定まることを示す。T は函手 K+(C) → Ind(K+(C′)) としては
well-definedに定まっている。X ∈ K+(C)を 0と擬同型な対象とする。このとき 0-射 X → 0は圏 SX の終
対象であるので、

T (X) = colim
X′∈SX

hF (X) = hF (0) = h0 ∼= 0

となる。よって Ind(K+(C′))において T (X) ∼= 0である。従って、本文 [KS, Proposition1.6.9 (iii)]より、函
手 T : D+(C)→ Ind(K+(C′))が well-definedに定まる。以上で T が (よって、σも) well-definedに定まるこ
とがわかった。
函手 σ が忠実であることを示す。X,Y を D+(C)の対象、f : X → Y を D+(C)の射であって、σ(f) = 0

であるとする。f は K+(C)の図式 X
f ′

−→ Y ′ t←− Y によって代表される。ここで tは擬同型である。σ(f) = 0

であることと、σ(t) が同型射であることから、σ(f ′) は 0-射である。idX ∈ hX(X) により代表される元
[idX ] ∈ σ(X)(X) = colimX′∈SX

hX′(X) の σ(f ′)(X) : σ(X)(X) → σ(Y ′)(X) での行き先は f ′ : X → Y ′

により代表される元 [f ′] ∈ σ(Y ′)(X) = colimY ′′∈SY ′ hY ′(X) であるが、σ(f ′) = 0であるから、[f ′] = 0で
ある。これは、ある [t′ : Y ′ → Y ′′] ∈ SY ′ が存在して t′ ◦ f ′ = 0となることを意味する。さらに t′ ◦ f ′ = 0
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は f ′ が D+(C)において 0-射であることを意味する。よって f は D+(C)において 0-射であることが従う。以
上より σ は忠実である。
函手 σ が充満であることを示す。f : σ(X) → σ(Y ) を Ind(K+(C)) の射とする。idX : X → X で
代表される元 [idX ] ∈ σ(X)(X) = colimX′∈SX

(hX′(X)) の f(X) : σ(X)(X) → σ(Y )(X) での行き先を
[f ] ∈ σ(Y )(X) = colimY ′∈SY

(hY ′(X))と置く。SY は filteredであるから、ある [t : Y → Y ′] ∈ SY とある
射 f ′ : X → Y ′ が存在して、[f ]は f ′ によって代表される。K+(C)の図式 X

f ′

−→ Y ′ t←− Y によって代表され
る D+(C)の射を g と置くと、f ′ が [f ]を代表することから、σ(g)([idX ]) = [f ] ∈ σ(Y )(X)がわかる。これ
は σ(g) = f を意味する。以上より σ は充満であり、(i)の証明を完了する。
(ii)を証明する。T が well-definedに定義されることは既に示している。Y の (up to isomでの) 一意性は

σ が忠実であることから従う。すべての X ∈ D+(C)で F が derivableであれば、F : D+(C)→ Ind(K+(C′))
は σ : D+(C′)→ Ind(K+(C′))の本質的像を一意的に経由するため、σ が忠実充満であることから、右導来函
手 RF : D+(C)→ D+(C′)であって σ ◦RF ∼= T となるものが (up to isomで) 一意的に存在する。以上で問
題 1.15の解答を完了する。

問題 1.16. C を加法圏とする。

(i) X ∈ Ch−(C), Y ∈ Ch+(C)とする。以下の等式を証明せよ：

Z0(Tot(HomC(X,Y ))) = HomCh(C)(X,Y ),

B0(Tot(HomC(X,Y ))) = Ht(X,Y ),

H0(Tot(HomC(X,Y ))) = HomK(C)(X,Y ).

ただしここで HomC(X,Y )は二重複体とみなしている。
(ii) さらに C がアーベル圏であり、十分入射的対象を持つか、または十分射影的対象を持つと仮定する。

X ∈ D−(C), Y ∈ D+(C)に対して、次の等式を示せ：

H0(RHomC(X,Y )) = HomD(C)(X,Y ).

Proof. (i) を示す。Hi,j :==
def

HomC(X
−i, Y j) とおけば、X ∈ Ch−(C), Y ∈ Ch+(C) であることから、二重

複体 Hi,j は本文の条件 [KS, (1.9.2)] を満たし、Ch2f (C) に属する。f : X → Y を Ch(C) の射とすると、f
は C の射の族 fn : Xn → Y n であって fn ◦ dn−1

X = dn−1
Y ◦ fn−1 を満たすものである。よって、とくに

f ∈
⊕

i+j=0H
i,j = Tot0(H•,•)であり、等式 fn ◦ dn−1

X = dn−1
Y ◦ fn−1 はさらに f が Z0(Tot(H•,•))に属す

ることを意味する。以上で (i)の一つ目の等式が従う。f : X → Y が homotopic to zero であるとする。この
とき、ある C の射の族 sn : Xn → Y n−1 が存在して fn = sn+1 ◦dnX +dn−1

Y ◦ sn となる。射の族 s = (sn)n∈Z

は⊕i+j=−1H
i,j に属し、等式 fn = sn+1 ◦ dnX + dn−1

Y ◦ sn は Tot−1(H•,•))→ Tot0(H•,•)) での sの像が
f ∈ Tot0(H•,•))となることを意味する。以上で (i)の二つ目の等式が従う。(i)の三つ目の等式は (i)の一つ
目と二つ目の等式より直ちに従う。以上で (i)の証明を完了する。
(ii) を示す。C が十分射影的対象を持つ場合、Cop を考えることによって、C が十分入射的対象を持つ
場合に帰着される (cf. [KS, Remark 1.10.10])。よって、(ii) を示すためには、C が十分入射的対象を持
つと仮定しても一般性を失わない。問題 1.15 の意味で SY という記号を用いる。C は十分入射的対象
を持つので、item (i) より HomD(C)(X,Y ) ∼= colimY ′∈SY

HomK(C)(X,Y
′) となり、また item (ii) より

RHomC(X,Y ) ∼= colimY ′∈SY
Tot(HomK(C)(X,Y

′)) となる。H0 を取ることで、

H0(RHomC(X,Y )) ∼= H0(colim
Y ′∈SY

Tot(HomK(C)(X,Y
′)))
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が従うが、SY は filteredであるから、余極限は H0 と可換して、

H0(RHomC(X,Y )) ∼= colim
Y ′∈SY

H0(Tot(HomK(C)(X,Y
′)))

が従う。よって、(i)の最後の等式で Y ′ ∈ SY に渡り余極限をとれば、

H0(RHomC(X,Y )) ∼= colim
Y ′∈SY

H0(Tot(HomK(C)(X,Y
′)))

∼= colim
Y ′∈SY

HomK(C)(X,Y
′)

∼= HomD(C)(X,Y )

が従う。以上で (ii)の証明を完了し、問題 1.16の解答を完了する。

問題 1.17. C をアーベル圏とする。C がホモロジー次元≤ nであるということを、任意のX,Y ∈ C に対して
Exti(X,Y ) = 0, (∀i > n) となることによって定義する。ただし、ここで Exti(X,Y ) :==

def
HomD(C)(X,Y [i])

である。自然数 nであって、C がホモロジー次元 ≤ nとなるもののうち、最小のものを hd(C)と表し、C のホ
モロジー次元と言う。
C は十分入射的対象を持つと仮定する。このとき、自然数 nに対して、以下の主張が同値であることを示せ：

(i) hd(C) ≤ nである。
(ii) 任意の対象 X ∈ C に対して、X の入射分解 X → I であって、i > nに対して Ii = 0となるものが存
在する。

Proof. (i)⇒(ii) を示す。hd(C) ≤ n であるとする。任意に対象 X ∈ C をとり、X → I を入射分解とする。
Y ∈ C を任意の対象とすると、item (ii)より、Hi(HomC(Y, I)) ∼= HomD(C)(Y,X[i]) = Exti(Y,X) である。
hd(C) ≤ nなので、Hn+1(HomC(Y, I)) = 0であり、従って

Im(HomC(Y, I
n)→ HomC(Y, I

n+1)) ∼= ker(HomC(Y, I
n+1)→ HomC(Y, I

n+2))

∼= HomC(Y, ker(d
n+1
I ))

∼= HomC(Y, Im(dnI ))

となる。よって、完全列

0 −−−−→ ker(dnI ) −−−−→ In −−−−→ Im(dnI ) −−−−→ 0

は任意の Y に対する HomC(Y,−) を適用したあとも完全である。従って、問題 1.4 より、In ∼= ker(dnI ) ⊕
Im(dnI ) となることがわかる。In は入射的対象であるから、その直和因子である ker(dnI ) も入射的対象であ
る。従って、X → τ≤n(I)は長さが n以下の入射分解となる。以上で (i)⇒(ii)の証明を完了する。
(ii)⇒(i)を示す。任意に対象X ∈ C をとり、X → I を長さ n以下の入射分解とする。Y ∈ C を任意の対象
とすると、item (ii)より、Hi(HomC(Y, I)) ∼= HomD(C)(Y,X[i]) = Exti(Y,X) であるので、Ii = 0, (i > n)

より、i > nに対して Exti(Y,X) = 0となることがわかる。以上で問題 1.17の解答を完了する。

問題 1.18. C を hd(C) ≤ 1のアーベル圏とする。X ∈ Db(C)を複体とするとき、Db(C)で

X ∼=
⊕
k∈Z

Hk(X)[−k]

となることを示せ。
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Proof. シフトすることで、Xi = 0, (∀i < 0)と仮定しても一般性を失わない。Xn 6= 0となる最大の nに関
する帰納法で証明する。n = 0であれば主張は自明であるので、ある n = k に対して主張が成立するときに、
n = k + 1の場合にも成立することを証明する。帰納法の仮定より、

τ≤n−1(X) ∼=
⊕
k∈Z

Hk(τ≤n−1(X))[−k] ∼=
⊕

k≤n−1

Hk(X)[−k]

である。従って、所望の同型を証明するためには、n = 1の場合、さらに d0X : X0 → X1 がモノ射である場合
に、Db(C)で X ∼= coker(d0X)[−1]となることを証明することが十分である。
X ∈ Db(C) は Xi = 0, (i ∈ (−∞, 0] ∪ (1,+∞)) であり、さらに d0X : X0 → X1 がモノ射であるとする。

X1 → I を入射的対象 I へのモノ射とすると、hd(C) ≤ 1 であるから、I/X0, I/X1 はどちらも入射的対象
となる。複体 J を J0 = J1 = I, d0J = idI で定義し、J1 を J0

1 = I/X0, J1
1 = I/X1 で d0J1 を自然な射とし

て定義すると、J1 は X1/X0 の入射分解であり、0 → X → J → J1 → 0 は Ch(C) の完全列である。従っ
て、X → J → J1 → X[1] は D(C) の完全三角である。J1 は X1/X0 の入射分解であるから、D(C) におい
て J1 ∼= X1/X0 である。以上より、D(C)の完全三角 X → J → X1/X0 → X[1]を得る。さらに、定義より
D(C)において J ∼= 0であるから、これは D(C)において X ∼= (X1/X0)[−1]となることを示している。以上
で問題 1.18の解答を完了する。

問題 1.19. C, C′ を二つのアーベル圏、F : C → C′ を左完全函手とする。さらに I ⊂ C を F -injectiveな部分
圏とする。対象 X ∈ C が F -acyclicであるということを、任意の k 6= 0に対して RkF (X) = 0となること
として定義する。J ⊂ C を F -acyclicな対象からなる充満部分圏とする。

(i) J は F -injectiveであることを示せ。
(ii) 任意の自然数 n ≥ 0に対して、以下の主張が同値であることを証明せよ：

(a) 任意の k > nと任意の対象 X ∈ C に対して RkF (X) = 0である。
(b) 任意の対象 X ∈ C に対して、完全列

0→ X → X0 → · · · → Xn → 0

で各 0 ≤ j ≤ nに対して Xj ∈ J となるものが存在する。
(c) X0 → · · ·Xn → 0が完全であり、任意の j < nに対して Xj ∈ J であるとき、Xn ∈ J である。
これらの同値な条件のうちのどれか一つが成立するとき、F はコホモロジー次元 ≤ nを持つと言う。

Proof. (i)を示す。まず、F -injectiveな対象は F -acyclicなので (cf. 本文 [KS, Proposition 1.8.3]とその直
前の記述)、I ⊂ J であり、従って J は本文条件 [KS, Definition 1.8.2 (i)] を満たす。また、J に属する対
象はすべて F -acyclic であるから、J が本文条件 [KS, Definition 1.8.2 (ii)] を満たすことは明らかである。
X ′ → X を J に属する対象の間のモノ射としてX ′′ :==

def
X/X ′とすると、各 i ≥ 1に対して完全列RiF (X)→

RiF (X/X ′)→ Ri+1F (X ′)を得る。X,X ′ は F -acyclicであるから、RiF (X) = 0, Ri+1F (X ′) = 0であり、
従って RiF (X/X ′) = 0もわかる。これは X/X ′ が F -acyclicであることを示していて、X/X ′ は J に属す
る。よって J は本文条件 [KS, Definition 1.8.2 (ii)] を満たし、J は F -injective である。以上で (i) の証明
を完了する。
(ii)を示す。(a)⇔(b)を示す。(a)⇔(b) を示すためには、対象 X ∈ C を固定して、次の二つの主張が同値
であることを証明することが十分である：

(i) 任意の k > nに対して RkF (X) = 0である。
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(ii) 完全列
0→ X → X0 → · · · → Xn → 0

で各 0 ≤ j ≤ nに対して Xj ∈ J となるものが存在する。

n に関する帰納法により (i)⇔(ii) を示す。n = 0 に対して (i) が成り立つことは、X が F -acyclic であるこ
とと同値であり、さらにこれは n = 0 に対して (ii) が成り立つことと同値である。よって n = 0 の場合は
明らかに (i)⇔(ii) が成り立つ。n ≥ 1として、nより小さいすべての自然数に対して (i)⇔(ii) が成り立つと
仮定する。J は本文条件 [KS, Definition 1.8.2 (i)] を満たすので、モノ射 d : X → X0 が存在する。X0 は
F -acyclicであるから、任意の k > nに対して Rk−1F (coker(d)) ∼= RkF (X)となる。従ってとくに、X と n

に対して (i)が成り立つことは、X = coker(d)と n− 1に対して (i)が成り立つことと同値である。帰納法の
仮定により、これはX = coker(d)と n− 1に対して (ii)が成り立つことと同値である。さらに coker(d)に対
する (ii)の完全列をX0 → coker(d)と繋ぐことを考えれば、X = coker(d)と n− 1に対して (ii)が成り立つ
ことはX と nに対して (ii)が成り立つことと同値である。以上で (i)⇔(ii) の証明を完了し、従って (a)⇒(b)

の証明を完了する。
(a)⇒(c) を示すためには、各対象 X ∈ C に対して次の二つの主張が同値であることを証明することが十分
である：

(i) 任意の k > nに対して RkF (X) = 0である。
(ii) 完全列

0→ X → X0 → · · · → Xn → 0

が条件「各 j < nに対して Xj ∈ J である」を満たせば、Xn ∈ J となる。

n = 0に対して (i)が成り立つことは、X が F -acyclicであることと同値であり、これは n = 0に対して (ii)

が成り立つことと同値である。よって n = 0の場合は明らかに (i)⇔(ii) が成り立つ。n ≥ 1として、nより
小さいすべての自然数に対して (i)⇔(ii) が成り立つと仮定する。

0→ X
d−→ X0 → · · · → Xn → 0

を条件「各 j < n に対して Xj ∈ J である」を満たす完全列とする。X0 は F -acyclic であるから、任意
の k > n に対して Rk−1F (coker(d)) ∼= RkF (X) となる。よって、X と n に対して (i) が成り立つことは、
X = coker(d)と n−1に対して (i)が成り立つことと同値である。帰納法の仮定により、これはX = coker(d)

と n− 1に対して (ii)が成り立つことと同値である。一方これは明らかに X と nに対して (ii)が成り立つこ
とと同値であるから、よって (i)⇔(ii)が従う。以上で (ii)の証明を完了し、問題 1.19の解答を完了する。

問題 1.20. C,D, E をそれぞれアーベル圏として、F : C → D, G : D → E を左完全函手とする。F -injective
な I ⊂ C と G-injectiveな J ⊂ D が存在して、F (I) ⊂ J となると仮定する (本文 [KS, Proposition 1.8.7]

の状況設定)。さらに、F はコホモロジー次元 ≤ rを持ち、Gはコホモロジー次元 ≤ sを持つとする。このと
き、G ◦ F はコホモロジー次元 ≤ r + sを持つことを示せ。

Proof. X ∈ C を任意にとる。F はコホモロジー次元 ≤ r を持つので、ある擬同型 X
qis.−−→ I で、各 k につい

て Ik は F -acyclic であり、さらに τ≤r(I) = I となるものがある。このとき、RF (X) ∼= RF (I) であるが、
本文 [KS, Proposition 1.8.3] と item (i) より、さらに RF (I) ∼= F (I) となる。ただしここで F (I) は各 Ik

を F で送ることによって得られる複体 (つまり K+(F )(I)) を表している。従って、本文 [KS, Proposition
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1.8.7] より、R(G ◦ F )(X) ∼= RG(RF (X)) ∼= RG(F (I)) が従う。Gのコホモロジー次元が ≤ sであること
と、τ≤r(F (I)) = F (I)であることから、問題 1.20を示すためには、次の主張を証明することが十分である：

(i) F : C → D をアーベル圏の間の左完全函手とする。F はコホモロジー次元 ≤ r を持ち、さらに
F -injectiveな I ⊂ C が存在すると仮定する。n ≥ 0を自然数とする。このとき、τ≤n(X) = X が成り
立つ任意の X ∈ Ch+(C)に対して、自然な射 τ≤n+r(RF (X))→ RF (X)は同型射である。

nに関する帰納法により (i)を示す。n = 0の場合は item (b)より従う。n − 1以下で (i)が成立すると仮定
する。Y :==

def
τ≤n−1(X), Z :==

def
coker(dn−1

X ) ∈ C と置く。このとき、Y → X の cone は Z[n] と擬同型であ
る。また、τ≤n−1(Y ) = Y であるから、帰納法の仮定より τ≤n−1+r(RF (τ≤n−1(X))) ∼= RF (τ≤n−1(X))

であり、τ≤0(Z) = Z であるから、すでに示されている n = 0 の場合より、τ≤n+r(RF (Z[n])) =

τ≤r(RF (Z))[n]congRF (Z)[n] = RF (Z[n])である。完全三角 Y → X → Z[n]→ Y [1] に RF を適用して得
られる完全三角 RF (Y )→ RF (X)→ RF (Z[n])→ RF (Y [1]) に τ≤n+r を適用すれば、完全三角

τ≤n+r(RF (Y ))→ τ≤n+r(RF (X))→ τ≤n+r(RF (Z[n]))→ τ≤n+r(RF (Y [1]))

を得る。τ≤n+r(RF (Y )) ∼= RF (Y ), τ≤n+r(RF (Z[n])) ∼= RF (Z[n])より、完全三角

RF (Y )→ τ≤n+r(RF (X))→ Z[n]→ Y [1]

を得る。以上で (i)の証明を完了し、問題 1.20の解答を完了する。

問題 1.21. F : C → D をアーベル圏の間の左完全函手とする。F -injective な I ⊂ C が存在すると仮定す
る。X ∈ D+(C) は i > 0, j ≤ j0 に対して RiF (Hj(X)) = 0 を満たすとする。このとき、j ≤ j0 に対して
RjF (X) ∼= F (Hj(X)) となることを示せ。

Proof. X ∈ D+(C)であるから、問題 1.21を示すためには j0 ≥ 0であると仮定しても一般性を失わない。j0
に関する帰納法で問題 1.21を示す。j0 = 0の場合、R0F (X) ∼= ker(F (d0X)) ∼= F (ker(d0X)) = F (H0(X)) で
あるから主張は自明である。
j0 未満で問題 1.21 が成り立つと仮定する。Y :==

def
τ≤j0−1(X), Z :==

def
τ≥j0(X) とすると Y → X → Z は

完全三角であり、Z[−j0] ∈ D+(C) であり、帰納法の仮定より、j ≤ j0 − 1に対して RjF (Y ) ∼= F (Hj(Y ))

であり、さらに τ≥j0(Y ) = 0であるから RjF (Y ) = 0, (j ≥ j0)である。X が今の j0 に対して問題 1.21の
仮定を満たすことから、Z[−j0] は j0 = 0 に対して問題 1.21 の仮定を満たし、すでに示したことによって
R0f(Z[−j0]) ∼= F (H0(Z[−j0]))となる。従って、RjF (Z) = 0, (j ≤ j0− 1)かつ Rj0F (Z) ∼= F (Hj0(Z))で
ある。Z = τ≥j0(X)なので Hj0(Z) ∼= Hj0(X)であり、従って Rj0F (Z) ∼= F (Hj0(X))が従う。
完全三角 Y → X → Z → Y [1] に RF を適用して得られる完全三角 RF (Y ) → RF (X) → RF (Z) →

RF (Y )[1]のコホモロジーをとることで、長完全列

RjF (Y )→ RjF (X)→ RjF (Z)→ Rj+1F (Y )

を得る。ここで j ≤ j0−1に対してRjF (Y ) ∼= F (Hj(Y ))であることと、j ≤ j0−1に対してRjF (Z) = 0で
あることから、j ≤ j0− 1に対して RjF (Y )→ RjF (X)は同型射である。さらに、τ≤j0−1(Y ) = Y であるか
ら、Rj0F (Y ) = 0である。従って、Rj0F (X)→ Rj0F (Z)が同型射となる。よって Rj0F (X) ∼= Rj0F (Z) ∼=
F (Hj0(X))が従う。以上で問題 1.21の解答を完了する。
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問題 1.22. C,D, E をそれぞれアーベル圏として、F : C → D, G : D → E を左完全函手とする。F -injective
な I ⊂ C と G-injectiveな J ⊂ D が存在して、F (I) ⊂ J となると仮定する (本文 [KS, Proposition 1.8.7]

の状況設定)。X ∈ D+(C)は RjF (X) = 0, (∀j < n)を満たすと仮定する。Rn(G ◦ F )(X) ∼= (G ◦RnF )(X)

を示せ。

Proof. 本文 [KS, Remark 1.8.6] を RF (X) と G に対して適用することで、任意の j < n に対して
RjG(RF (X)) = 0 であり、さらに RnG(RF (X)) ∼= G(Hn(RF (X))) = G(RnF (X)) である。また、本
文 [KS, Proposition 1.8.7] より R(G ◦ F )(X) ∼= RG(RF (X))であるので、n番目のコホモロジーをとれば
Rn(G ◦ F )(X) ∼= RnG(RF (X)) が従う。よって Rn(G ◦ F )(X) ∼= RnG(RF (X)) ∼= G(RnF (X)) となり、
以上で問題 1.22の解答を完了する。

問題 1.23. C をアーベル圏、I ⊂ C を充満部分圏とする。I が本文の条件 [KS, (1.7.5),(1.7.6)] を満たすと
し、さらに次を条件を満たすと仮定せよ：

(i) 0→ X ′ → X → X ′′ → 0を C の完全列であって、X ′ ∈ I であると仮定する。このとき、X ∈ I であ
ることは X ′′ ∈ I であることと同値である。

∗ =, b,−,+とする。

(i) 任意の対象 X ∈ Ch∗(C)はある Y ∈ Ch∗(I)と擬同型であることを示せ。
(ii) D を別のアーベル圏、F : C → D を左完全函手とする。I が F -injectiveであると仮定する。このとき

F の右導来函手 RF : D∗(C)→ D∗(D)が存在することを示せ。
(iii) E をさらに別のアーベル圏、G : C × D → E を左完全な双函手とする。各 Y ∈ D に対して I は

G(−, Y )-injectiveであるとし、さらに各 I ∈ I と 0と擬同型な Y ∈ Ch⋆(D)に対して G(I, Y )は 0と
擬同型であるとする。このとき、(∗, ?) = (−,−) の場合と (∗, ?) = (∗, b) の場合で、G の右導来函手
RG : D∗(C)× D⋆(D)→ D∗(E) が存在することを示せ。

注意. 少なくとも第一版では (iii)の仮定に「各 I ∈ I と 0と擬同型な Y ∈ Ch⋆(D)に対して G(I, Y )は 0と
擬同型である」というものはなかった。なくても証明できるのか？本文 [KS, Corollary 1.10.5]とパラレルで
あることを想定すればこの仮定がなければ微妙になると思うが...

Proof. (i) を示す。∗ = b の場合は本文 [KS, Corollary 1.7.8] より、∗ = + の場合は本文 [KS, Corollary

1.7.7]より従う。∗ = ∅の場合を証明すれば、本文 [KS, Corollary 1.7.8]と全く同様の議論により、∗ = −の
場合が従う。残っているのは、∗ = ∅ の場合に (i) を示すことである。∗ = + の場合の構成を詳細に見るた
め、∗ = +の場合の証明を思い出す。Z ∈ Ch(C)に対して、複体 τ̃≤n(Z)を次で定義する：

· · · → Zi → · · · → Zn
dnZ−−→ Zn+1 → coker(dnZ)→ 0→ · · · → 0→ · · · .

このとき、自然な全射の列 Z → τ̃≤n(Z)→ τ̃≤n−1(Z) が存在して、合成 τ≤n(Z)→ Z → τ̃≤n(Z)は擬同型
であり、さらに自然な射 Z

∼−→ limn→∞ τ̃≤n(Z) は同型射である (極限が存在することに注意)。また、Z≤n

を次で定義する (Z≥n も同様に定義する)：
· · · → Zi → · · · → Zn → 0→ · · · → 0→ · · · .

このとき、自然な複体のモノ射 τ̃≤n−1(Z) → Z≤n+1 が存在する。X ∈ Ch+(C)とする。ある nに対して次
の条件が成り立つと仮定する：任意のm ≤ nに対して、
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• 複体 Im ∈ Ch+(I)であって In = I≤nn を満たすもの、
• 複体のモノ射 fm : X≤m → Im であって τ̃≤m−1(fm) : τ̃≤m−1(X) → τ̃≤m−1(Im) がモノな擬同型と
なるもの、

が存在し、任意のm1 ≤ m2 ≤ nに対して I≤m1
m2

= Im1
, f im1

= f im2
, (∀i ≤ m1) を満たすと仮定する。この条

件は十分小さい n � 0 に対してはつねに満たされる (n � 0 に対しては X≤n = 0 なので In = 0 とすれば
良い)。Yn+1 :==

def
τ̃≤n−1(In)

∐
τ̃≤n−1(X)X

≤n+1 とおくと、自然な射 X≤n+1 → Yn+1 はモノな擬同型による
push-out であるのでモノな擬同型である。さらに各 i ≤ n に対して (τ̃≤n(X))i → (X≤n+1)i は同型射なの
で、各 i ≤ nに対して Iin → Y in+1 も同型射である。I は本文の条件 [KS, (1.7.5)]を満たすので、あるモノ射
Y n+1
n+1 → J が存在する。複体 In+1 を、各 i ≤ nに対して Iin+1 :==

def
Y in+1

∼= Iin、i > n+1に対して In+1 :==
def

0、
In+1
n+1 :==

def
J と定めることで、モノ射の列 X≤n+1 → Yn+1 → In+1 を得る。この合成を fn+1 とおく。すると

構成より各 i ≤ nに対して f in+1 = fn である。また、図式

τ̃≤n−1(X) −−−−→ τ̃≤n−1(In)y y
X≤n+1 −−−−→ In+1

で ToDo: ref: 1.6.3, 1.6.4 を用いることで τ̃≤n(fn+1)がモノな擬同型であることが従う。こうして任意
の nに対してモノ射 fn : X≤n → In, In = I≤nn ∈ Ch+(I)であって τ̃≤n−1(fn)がモノな擬同型となるものが
存在することがわかったので、あとは limn→∞ τ̃≤n(fn)をとれば所望の擬同型 f : X → I, I ∈ Ch+(I)を得
る。構成から、f はモノ射であり、Xi = 0なら f i = 0、となるようにとれる。
I が自然数 d ≥ 0に対して本文の条件 [KS, (1.7.6)]を満たすとする。複体 Z と各 nに対して、モノな擬同
型 Z≥n → I, (I ∈ Ch(I)) をとって Z≤−n−1 と繋げることで、新しい複体 Z ′ とモノな擬同型 f0 : Z → Z ′ で
あって (Z ′)i = Zi, f i0 = idZi , (∀i < n) であり、さらに (Z ′)i ∈ I, (∀i ≥ n) となるものが存在することが従
う。この複体 Z ′ を In(Z)で表す。
複体 Z が、ある i0 以上の全ての i ≥ i0 に対して Zi ∈ I を満たすと仮定する。Z1 :==

def
Ii0−1(Z)とおくと、

C :==
def

coker(Z → Z1) は完全であり、さらに I が条件 (i) を満たすことより、Ci ∈ I, (∀i ≥ i0) である。ま
た、C が完全であることと I が d に対して本文の条件 [KS, (1.7.6)] を満たすことより、各 i ≥ i0 + d − 1

に対して Im(diC) ∈ I である。従って、C が完全であることより、τ≤i0+d(C) は任意の i ≥ i0 に対して
(τ≤i0+d(C))i ∈ I を満たす。Ji0(Z) :==def Z1 ×C τ≤i0+d(C) (複体の圏での fiber積) とおくと、Z → Z1 がモ
ノであることから、

0 −−−−→ Z −−−−→ Ji0(Z) −−−−→ τ≤i0+d(C) −−−−→ 0

は (複体の圏で) 完全である。任意の i ≥ i0 に対して (τ≤i0+d(C))i ∈ I を満たすことと I は条件 (i)を満た
すことより、任意の i ≥ i0 に対して (Ji0(Z)

i ∈ I である。さらに i > i0 + dに対して (τ≤i0+d(C))i = 0なの
で、i > i0 + dに対して Zi

∼−→ (Ji0(Z))
i であり、i < i0 + dに対して (τ≤i0+d(C))i

∼−→ Ci なので、i < i0 + d

に対して (Ji0(Z))
i ∼−→ Zi1 である。従って、とくに Ji0(Z)

i0−1 ∼= Zi0−1
1 ∈ I が従う。まとめると、モノな擬

同型 Z → Ji0(Z)であって、i > i0 + dに対して Zi
∼−→ (Ji0(Z))

i であり、i ≥ i0 − 1に対して (Ji0(Z))
i ∈ I

となるものが存在する。
I0, Jn を用いて (i)の証明を行う。複体 X ∈ Ch(C)を任意にとる。X0 :==

def
I0(X)とおく。各 n < 0に対し

て、Xn :==
def
Jn+1(Xn+1)と定義して、モノな擬同型Xn+1 → Xnたちの余極限をとる。このとき、各 i ≥ n+d

に対して Xi
n → Xi

n−1 は同型射であるから、Y :==
def

colimn→−∞Xn は圏 Ch(C)に存在して、各 i ∈ Zに対し
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て Y i ∼= Xi
−|i|−d ∈ I となる。さらに各 Xn → Xn−1 と X → X0 はすべて擬同型であるから、X → Y も擬

同型である。よって所望の複体と擬同型が構成できた。以上で (i)の証明を完了する。
(ii) を示す。N を K∗(C) の充満部分三角圏であって 0 と擬同型な複体すべてからなるものとする。
N ′ :==

def N ∩ K∗(I) とおく。すると (i) より、自然な射 K∗(I)/N ′ → D∗(C) は圏同値である。また、I が
F -injectiveであることから、K∗(I)の 0と擬同型な対象は F によって acyclicな対象へと写される。従って、
K∗(I) ⊂ K∗(C)と F : K∗(C) → K∗(D)の合成は K∗(I)/N ′ ∼= D∗(C)を一意的に経由する。このことは右導
来函手 RF が存在することを意味する。以上で (ii)の証明を完了する。
(iii) を示す。(∗, ?)は (∗, b)または (−,−)を表すとする。I は各 Y ∈ D に対して G(−, Y )-injective であ
るから、I ∈ Ch∗(I)が完全な複体であれば、Y ∈ Ch⋆(D)と各 i ∈ Zに対して G(I, Y i) ∈ Ch∗(E)も完全な複
体であり、従って G(I, Y )は一つ目の添字に関して完全な二重複体となる。よって本文 [KS, Theorem 1.9.3]

より、Y ∈ Ch⋆(D)と I ∈ Ch∗(I)の一方が 0と擬同型 (完全) な複体であれば、Tot(G(I, Y ))も 0と擬同型
となる。このことは、Tot(G(−,−)) : K∗(I)× K⋆(D)→ D∗(E) が D∗(I)× D⋆(D)を一意的に経由すること
を意味する。従って三角函手 D∗(I)× D⋆(D)→ D∗(E)を得る。ここで (i)より D∗(I) ∼−→ D∗(C)は圏同値で
あるので、こうして得られた三角函手 D∗(C)×D⋆(D)→ D∗(E)は所望の右導来函手であることが従う。以上
で問題 1.23の解答を完了する。

問題 1.24.

(i) F : C → D をアーベル圏の間の左完全函手、I ⊂ C を F -injective な充満部分圏として、X ∈ D+(C)
を対象とする。各 j ∈ Zに対して自然な射 Hj(RF (X))→ F (Hj(X))を構成せよ。

(ii) C,D, E をアーベル圏、F : C × D → E を加法的な双函手、X ∈ D∗(C), Y ∈ D∗(D)を対象とする。こ
こで ∗は +か −であるとする。
(a) F が左完全で ∗ = + (resp. F が右完全で ∗ = −) であるとせよ。各 p, q ∈ Z に対して自然な射

Hp+q(RF (X,Y )) → F (Hp(X),Hq(Y )) (resp. F (Hp(X),Hq(Y )) → Hp+q(LF (X,Y )) を構成
せよ。

(b) F が完全であるとせよ。各 n ∈ Zに対して以下の同型を示せ：

Hn(F (X,Y )) ∼=
⊕
p+q=n

F (Hp(X),Hq(Y )).

注意. I のような部分圏の存在に関して本文中では全く仮定がなかったが、右導来函手の存在のみから証明で
きることなんだろうか。もしそうなら、問題 1.21でも仮定する必要がなかったはずだけど...

Proof. (i)を示す。余核の普遍性によって自然な射 coker(F (djX))→ F (coker(djX))を得る。さらに核の普遍
性によって自然な射 Hj(F (X)) → ker(F (coker(dj−1

X )) → F (Xj)) を得る。ここで F は左完全であるから、
自然な同型 ker(F (coker(dj−1

X )) → F (Xj)) ∼= F (ker(coker(dj−1
X ) → Xj)) ∼= F (Hj(X))を得る。以上より、

自然な射Hj(F (X))→ F (Hj(X))を得る (自然、の意味は、複体X に対して函手的、という意味。余核の間
の射も核の間の射も核を F の中に入れる同型射もすべて X について函手的)。本文 [KS, Proposition 1.7.7]

または item (i)より、モノな擬同型X → I, (I ∈ K+(I))が存在する。RF (I) ∼= F (I)が成り立つので、自然
な射

RjF (X) ∼= RjF (I) ∼= Hj(F (I))→ F (Hj(I)) ∼= F (Hj(X))

を得る。以上で (i)が示された。
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(ii) を示す。(a) を示す。∗ = + で F が左完全である場合を証明できれば、Cop,Dop を考えることに
よって ∗ = − で F が右完全である場合も正しいことが従う。よって、(a) を示すためには、∗ = + で
F が左完全であると仮定しても一般性を失わない。(i) の証明と同様に、各 Y q について自然な E の射
Hp
I (F (X,Y

q))→ F (Hp(X), Y q)を得る。これらを q に関する複体と考えることで、(i)の証明と同様に、各
p, q について自然な E の可換図式

Hq(Hp
I (F (X,Y ))) −−−−→ Hq(F (Hp(X), Y ))y y

Hp(F (X,Hq(Y ))) −−−−→ F (Hp(X),Hq(Y ))

を得る。Z ∈ Ch2,+(E) を二重複体とする。複体の射 Tot(Z) → ZqII [−p] で n = p + q 次のコホモロジーを
とれば E の射 Hn(Tot(Z)) → Hp

I (Z) を得る。Hp
I (Z

•,∗) は ∗ に関して複体を成し、合成 Hn(Tot(Z)) →
Hp
I (Z

•,q)→ Hp
I (Z

•,q+1)は 0-射である。従って、E の射Hn(Tot(Z))→ Hq(Hp
I (Z))を得る。よって、もと

の二重複体 F (X,Y )に対しても、E の射 Hp+q(F (X,Y )) → Hq(Hp
I (F (X,Y )))を得る。以上より自然な射

Hp+q(F (X,Y )) → F (Hp(X),Hq(Y ))を得る。ここで擬同型 X → I, I ∈ K+(I)をとれば、D+(E)におい
て RF (X,Y ) ∼= F (I, Y )であるため、よって自然な射

Hp+q(RF (X,Y )) ∼= Hp+q(F (X,Y ))→ F (Hp(I),Hq(Y )) ∼= F (Hp(X),Hq(Y ))

を得る。以上で (a)の証明を完了する。
(b) を示す。(a) の証明と同様にして、Hq

II(H
p
I (F (X,Y ))) ∼= F (Hp(X),Hq(Y )) であることが従うので、

(b) を示すためには、E の二重複体 Z であって τ≤nI (Z) = τ≤nII (Z) = 0, (∀n � 0) を満たすものに対して、
Hn(Tot(Z)) ∼=

⊕
p+q=nH

q
II(H

p
I (Z)) であることを証明することが十分である。しかしこれは、Z として

τ≤n(Z)をとることで任意の n � 0に対して成立し、さらに item (i)を用いることで帰納的に任意の nに対
する τ≤n(Z) に対して成立するので、n → ∞ の極限をとることで Z に対して成立することが従う。以上で
(b)の証明を完了し、(ii)の証明を完了し、問題 1.24の解答を完了する。

問題 1.25. C をアーベル圏、X を C の複体で、各 nに対して Xp,q 6= 0, p+ q = nとなる (p, q)は高々有限
個であるとする。

(i) 以下の三角形が D(C)において完全であることを示せ：

Tot(τ≤n−1
II (X))→ Tot(τ≤nII (X))→ Hn

II(X)[−n] +1−−→,

Hn
II(X)[−n]→ Tot(τ≥nII (X))→ Tot(τ≥n+1

II (X))
+1−−→,

(ii) k ∈ Z を固定する。自然な射 Hk(Tot(τ≤nII (X))) → Hk(Tot(X)) (resp. Hk(Tot(X)) →
Hk(Tot(τ≥nII (X)))) は n� 0 (resp. n� 0) に対して同型であることを示せ。

(iii) k ∈ Z を固定する。n � 0 に対して Hk(Tot(τ≤nII (X))) = 0 であることと、n � 0 に対して
Hk(Tot(τ≥nII (X))) = 0であることを示せ。

Proof. (i) を示す。自然な射 coker(τ≤n−1
II (X) → τ≤nII (X)) → Hn

II(X)[−n] に本文 [KS, Proposition 1.9.3]

を用いることにより、Tot(coker(τ≤n−1
II (X)→ τ≤nII (X))) → Hn

II(X)[−n] が擬同型であることが従い、これ
は一つ目の三角形が完全三角であることを示している。二つ目の三角形が完全三角であることは Cop において
一つ目の三角形が完全三角であることより従う。以上で (i)の証明を完了する。
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(ii)を示す。Xp,q 6= 0, p+ q = k, k − 1, k + 1となる pが存在するような q のうち最大のものを n0 とすれ
ば、n > n0 と p+ q = k, k − 1, k + 1を満たす任意の p, q に対して (τ≤nII (X))p,q = Xp,q となり、(ii)はこれ
からただちに従う。以上で (ii)の証明を完了する。
(iii)を示す。Xp,q 6= 0, p+ q = k, k − 1, k + 1となる pが存在するような q のうち最小のものを n0 とすれ
ば、n < n0 と p+ q = k, k − 1, k + 1を満たす任意の p, q に対して (τ≤nII (X))p,q = Xp,q = 0となり、(iii)は
これからただちに従う。以上で (iii)の証明を完了し、問題 1.25の解答を完了する。

問題 1.26. C をアーベル圏、X を C の複体で、各 nに対して Xp,q 6= 0, p+ q = nとなる (p, q)は高々有限
個であるとする。さらに q0 < q1 が存在して、q 6= q0, q1 に対して D(C)において Hq

II(X) ∼= 0であると仮定
する。このとき次の三角形が完全であることを示せ：

Hq0
II (X)[−q0]→ Tot(X)→ Hq1

II [−q1]
+1−−→ .

Proof. item (i) より、n 6= q0, q1 に対して Tot(τ≤n−1
II (X)) → Tot(τ≤nII (X)) と Tot(τ≥nII (X)) →

Tot(τ≥n+1
II (X)) はどちらも擬同型である。従って、item (iii) より、任意の n < q0 に対して D(C) にお

いて Tot(τ≤nII (X)) ∼= 0 であり、任意の n > q1 に対して D(C) において Tot(τ≥nII (X)) ∼= 0 である。再び
item (i) を用いると、任意の q0 ≤ n < q1 に対して D(C) において Tot(τ≤nII (X)) ∼= Hq0

II [−q0] であり、任
意の q0 < n ≤ q1 に対して D(C) において Hq1

II [−q1] ∼= Tot(τ≥nII (X)) であることが従う。各 n に対して
τ≤nII (X)→ X → τ≥n+1

II (X)
+1−−→ は D(Ch(C))の完全三角なので、

Tot(τ≤nII (X))→ Tot(X)→ Tot(τ≥n+1
II (X))

+1−−→

は D(C)の完全三角である。n = q0 とすると、n+ 1 ≤ q1 であるので、従って

Hq0
II [−q0]→ Tot(X)→ Hq1

II [−q1]
+1−−→

は D(C)の完全三角である。以上で問題 1.26の解答を完了する。

問題 1.27. C をアーベル圏 (resp. 三角圏) とする。

K(C) :==def
(⊕
X∈C

Z ·[X]

)
/([X] = [X ′] + [X ′′])

と定義する。ただしここで [X]は C の対象の同型類を表し、商はすべての完全列 0 → X ′ → X → X ′′ → 0

(resp. 完全三角 X ′ → X → X ′′ +1−−→) に渡ってとるものとする。K(C)を C のGrothendieck群と言う。C
をアーベル圏とする。i : C → Db(C)は群の同型 K(C) ∼−→ K(Db(X)) を引き起こすことを示せ。また、逆射
が ϕ : X 7→

∑
j(−1)j [Hj(X)]により与えられることを示せ。

Proof. C の完全列 0 → X ′ → X → X ′′ → 0を iで送れば Db(C)の完全三角 X ′ → X → X ′′ +1−−→を得るの
で、[X] 7→ [i(X)] によって K(C) → K(Db(C)) が well-defined に定義される。さらに X ′ → X → X ′′ +1−−→
が Db(C)の完全三角であれば、コホモロジーをとることで長い完全列

· · · → Hi(X ′)→ Hi(X)→ Hi(X ′′)→ · · ·

を得るので、従って∑j(−1)j [Hj(X)] =
∑
j(−1)j [Hj(X ′)]+

∑
j(−1)j [Hj(X ′′)] が従い、ϕも well-defined

である。ϕ ◦ i = idK(C) は明らかであるから、i ◦ ϕ = idK(Db(C)) であることを確認する。一般に、完全三角
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X ′ → X → X ′′ +1−−→ に対して三角形 X → X ′′ → X ′[1]
+1−−→ も完全であることから [X ′′] = [X] + [X ′[1]]

かつ [X] = [X ′] + [X ′′] であることが従い、[X ′[1]] = [X ′′] − [X] = −([X] − [X ′′]) = −[X ′] であることが
従う。よって任意の X ∈ Db(C) に対して [X[1]] = −[X] である。ある n で (i ◦ ϕ)([τ≤n(X)]) = [τ≤n(X)]

が成り立つと仮定する (これは十分小さい n に対して明らかに成り立つ)。三角形 τ≤n(X) → τ≤n+1(X) →
Hn+1(X)[−n− 1]

+1−−→ が完全であることから、

[τ≤n+1(X)] = [i(Hn+1(X))[−n− 1]] + [τ≤n(X)]

= (−1)n+1i([Hn+1(X)]) + (i ◦ ϕ)([τ≤n(X)])

= (−1)n+1i([Hn+1(X)]) +
∑
j

(−1)ji([Hj(τ≤n(X))])

= (−1)n+1i([Hn+1(X)]) +
∑
j≤n

(−1)ji([Hj(X)])

=
∑

j≤n+1

(−1)ji([Hj(X)])

=
∑
j

(−1)ji([Hj(τ≤n+1(X))])

= (i ◦ ϕ)([τ≤n+1(X)])

が従う。帰納法により、任意の n で (i ◦ ϕ)([τ≤n(X)]) = [X] であることが従う。X ∈ Db(C) であるので、
十分大きい n を考えることで (i ◦ ϕ)([X]) = [X] が従う。以上で i ◦ ϕ = idK(Db(C)) であることが従い、問
題 1.27の証明を完了する。

問題 1.28. Aを環とする。以下の条件が同値であることを証明せよ：

(i) Mod(A)はホモロジー次元 ≤ nを持つ。
(ii) 任意の左 A-加群M は長さ n以下の入射分解を持つ。
(iii) 任意の左 A-加群M は長さ n以下の射影分解を持つ。

Mod(A)のホモロジー次元かMod(Aop)のホモロジー次元のうち大きい方を Aの大域ホモロジー次元 (global

homological dimension) と言い、gld(A)と表す。

Proof. ToDo: ref: 1.17.1, 1.17.2より (i) ⇐⇒ (ii)であることが従う。さらに C のホモロジー次元は定
義より Cop のホモロジー次元と等しいので、Mod(A)op で考えると、再び ToDo: ref: 1.17.1, 1.17.2より
(i) ⇐⇒ (iii)であることが従う。以上で問題 1.28の解答を完了する。

問題 1.29. Aを環とする。

(i) 任意の自由加群は射影的であることを示せ。
(ii) 任意の射影加群はある自由加群の直和因子であることを示せ。
(iii) 射影加群は平坦加群であることを示せ。
(iv) n ≥ 0を自然数とする。以下の条件が同値であることを示せ：

(a) 任意の右 A-加群 N と任意の左 A-加群M と任意の j > nに対して TorAj (N,M) = 0である。
(b) 任意の左 A-加群M に対して完全列 0 → Pn → · · · → P 0 → M → 0 であって各 P i が平坦加群
となるものが存在する。

(c) 任意の右 A-加群M に対して完全列 0 → Pn → · · · → P 0 → M → 0 であって各 P i が平坦加群
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となるものが存在する。
これらの同値な条件を満たす最小の n ∈ N∪{∞} を wgld(A) と表し、A の弱大域次元 (weak global

dimension) という。
(v) wgld(A) ≤ gld(A)であることを示せ。

Proof. (i)は函手の同型 HomA(A
⊕I ,−) ∼=

∏
I(−) より従う。

(ii)を示す。P を射影加群として全射 p : A⊕I → P をとる。P が射影加群であることから射 idP : P → P

がリフトして p ◦ s = idP となる s : P → A⊕I が存在する。よって item (i)より P は A⊕I の直和因子であ
る。以上で (ii)の証明を完了する。
(iii)を示す。P を射影加群として、P が直和因子となるように射 i : P → A⊕I をとる。p : A⊕I → P を i

の左逆射、つまり p ◦ i = idP となる射とする。f : M → N を A-加群の単射とする。(iii)を示すためには、
f ⊗A idP が単射であることを示すことが十分である。可換図式

M ⊗A P
id⊗i−−−−→ M ⊗A A⊕I id⊗p−−−−→ M ⊗A P

f⊗id

y f⊗id

y yf⊗id

N ⊗A P
id⊗i−−−−→ N ⊗A A⊕I id⊗p−−−−→ N ⊗A P

において、上と下の合成は idであり、M ⊗A A⊕I ∼= M⊕I より真ん中は単射である。従って両端も単射であ
ることが従う。以上で (iii)の証明を完了する。
(iv) を示す。(a) ⇐⇒ (b) を示すことができれば、Aop に対して (a) ⇐⇒ (b) を適用することで (a)

⇐⇒ (c) が従う。残っているのは (a) ⇐⇒ (b) を示すことである。
(a)が成り立つと仮定する。自由分解 · · · → Pn

dnP−−→ · · · → P 0 d0P−−→M → 0を一つとる。任意のN と j > n

に対して TorAj (N,M) = 0が成り立つので、とくに任意の N と j > n − 1に対して TorAj (N, ker(d
0
P )) = 0

が成り立つ。ker(d0P )
∼= Im(d1P ) に注意して繰り返すと、繰り返して、任意の N と任意の j > 0 に対し

て TorAj (N, ker(d
n−1
P )) = 0 が成り立つ。このことは ker(dn−1

P ) が平坦であることを意味していて、完全列
0 → ker(dn−1

P ) → Pn−1 → · · · → P 0 → M → 0 はM の長さ n以下の平坦分解である。以上で (a) ⇒ (b)

が示された。
(b)が成り立つと仮定する。任意に左 A-加群M と右 A-加群 N と j > nをとる。仮定よりM の平坦分解

0→ Pn
dnP−−→ · · · → P 0 d0P−−→ M → 0 が存在する。Pn, Pn−1 は平坦であるから、完全列 0→ Pn → Pn−1 →

Im(dn−1
P )→ 0 に N ⊗A (−)を施すことで、任意の j > 1に対して TorAj (N, Im(dn−1

P )) = 0であることが従
う。完全列 0 → Im(dn−1

P ) → Pn−2 → Im(dn−2
P ) → 0 に N ⊗A (−)を施すことで、任意の j > 2に対して

TorAj (N, Im(dn−2
P )) = 0であることが従う。帰納的に、任意の j > k に対して TorAj (N, Im(dn−kP )) = 0であ

ることが従う。n = k とすれば所望の結論を得る。以上で (b) ⇒ (a) が示され、(iv)の証明を完了する。
(v)は ToDo: ref: 1.28.1, 1.28.3と (iii)より従う。以上で問題 1.29の解答を完了する。

問題 1.30. Aを可換環とする。X ∈ Db(Mod(A)) が perfect であるとは、有限生成射影加群からなる有界
な複体と擬同型であることを言う。

(i) X → Y → Z
+1−−→が Db(Mod(A))の完全三角であるとする。X,Y が perfectであるとき、Z も perfect

であることを示せ。
(ii) P が perfectであるとき、P の直和因子も perfectであることを示せ。
(iii) X ∈ Db(Mod(A)) が perfect であるとする。X∗ :==

def
RHom(X,A) とおくと、X∗ も perfect であり、
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自然な射 X → X∗∗ は同型射であることを示せ。
(iv) A をネーター環で gld(A) < ∞ と仮定する。Modf (A) を有限生成 A-加群のなすアーベル圏とする。

Db(Modf (A))の任意の対象は perfectであることを示せ。
(v) Aをネーター環で gld(A) <∞と仮定する。すべてのコホモロジーがModf (A)に属する複体からなる
充満部分圏を Dbf (Mod(A)) ⊂ Db(Mod(A))で表す。このとき自然な射 Db(Modf (A))→ Dbf (Mod(A))

は圏同値であることを示せ。

Proof. (i)を示す。X,Y は perfectなので、(i)を示すためには、X,Y はどちらも有限生成射影加群からなる
有界複体であると仮定しても一般性を失わない。このとき Z は i次が Y i⊕Xi+1 である複体と擬同型であり、
Y i, Xi+1 はどちらも有限生成射影加群なので Y i ⊕Xi+1 も有限生成射影加群である。従って、Z も perfect

である。以上で (i)の証明を完了する。
(ii) より先に (iii) を示す。X は perfect であるから、(iii) を示すためには、各 i に対して Xi は有限生成
射影加群であり、Xi = 0, (|i| � 0)であると仮定しても一般性を失わない。このとき本文 [KS, Proposition

1.10.4] より、Db(Mod(A)) において RHom(X,A) ∼= Hom(X,A) である。各 i に対して Hom(X,A)i =

Hom(X−i, A)は射影加群であり、|i| � 0となる iに対して Hom(X,A)i = Hom(X−i, A) = 0であるから、
Hom(X,A)は perfectであり、従って RHom(X,A)も perfectである。有限生成射影加群 X に対して自然
な射 X → Hom(Hom(X,A), A)が同型射であることから自然な射 X → Hom(Hom(X,A), A)は複体の同型
射であり、従って Db(Mod(A))においても同型射である。Hom(X,A) ∼= RHom(X,A)は perfect であるの
で、X∗∗ ∼= Hom(X∗, A) ∼= Hom(Hom(X,A), A)であり、従って自然な射 X → X∗∗ は同型射である。以上
で (iii)の証明を完了する。
(iv)を示す。任意の有限生成加群は有限生成自由加群のある商と同型であるから、アーベル圏Modf (A)opは
I を有限生成射影加群からなる充満部分圏とするときに本文の条件 [KS, (1.7.5)]を満たす。また gld(A) <∞
であるから、問題 1.28より、アーベル圏 Modf (A)op は同じ I に対して本文の条件 [KS, (1.7.6)] を満たす。
従って本文の [KS, Corollary 1.7.8]より (iv)が従う。以上で (iv)の証明を完了する。
(v) は Mod(A)op とその thick full abelian subcategory Modf (A)op ⊂ Mod(A)op に対して本文 [KS,

Proposition 1.7.11]を適用することにより直ちに従う (Modf (A)op が本文 [KS, Proposition 1.7.11]の条件を
満たすことは容易に確認できる)。

問題 1.31. M ∈ Db(Ab)とする。

(i) M∗ = RHom(M,Z) = 0であるとき、M = 0であることを示せ。
(ii) M∗ ∈ Dbf (Ab)であるとき、M ∈ Dbf (Ab)であることを示せ。

注意. (ii) は M∗ ∈ Db(Modf (Z)) という仮定のもとで M ∈ Db(Modf (Z)) を示す問題であったが、
Db(Modf (Z)) は Db(Ab) の部分圏として同型で閉じていないので、これはかなり微妙な問題設定であり
(成り立たないかもしれない)、上記の設定がより適切であると思われる。

Proof. (i) を示す。まず M ∈ Ab である場合に (i) を証明する。RHom(M Z) = 0 は Hom(M,Z) =

Ext1(M,Z) = 0 を意味する。このときに M = 0 を示す。単射 Z /nZ → M を任意にとると 0 =

Ext1Z(M,Z) → Ext1Z(Z /nZ,Z) は全射となるので Z /nZ ∼= Ext1Z(Z /nZ,Z) = 0 となって n = 1 と
なる。従って M はねじれなし群である。n 6= 0, 1,−1 とすれば M/nM はねじれ群であるが、完全列
0 → M

n−→ M → M/nM → 0 に函手 RHom(−,Z) を施すことによって RHom(M/nM,Z) = 0 が従い、
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よってM/nM はねじれなし群でもある。これはM/nM = 0 を意味し、従ってM は可除である。M はね
じれがないので M → M ⊗ Q は単射であり、M は可除なのでこれは全射でもある。従って M ∼= M ⊗ Q
である。もし M 6= 0 なら、M は Q を直和因子として持つ。一方、完全列 0 → Z → Q → Q /Z → 0

に Hom(Q /Z,−) を適用することにより、Ẑ ∼= End(Q /Z) ∼−→ Ext1(Q /Z,Z) を得るので、同じ完全列に
Hom(−,Z)を適用することで Ext1(Q,Z) ∼= coker(Hom(Z,Z)→ Ext1(Q /Z,Z)) ∼= Ẑ/Z 6= 0 が従い、これ
は Ext1(M,Z) = 0に反する。以上でM ∈ Abの場合に示された。
一般の M ∈ Db(Ab) に対して (i) を示す。Hn(M) 6= 0 となる最大の n をとる。このとき τ≤n−1(M) →

M → Hn(M)[−n] +1−−→ は完全三角である。RHom(−,Z)を適用してコホモロジーをとることで、アーベル
群の完全列

0 −−−−→ Hom(Hn(M),Z) −−−−→ Hn(RHom(M,Z)) −−−−→ Hn(RHom(τ≤n−1(M),Z))

−−−−→ Ext1(Hn(M),Z) −−−−→ Hn+1(RHom(M,Z)) −−−−→ · · ·

を得る。ここで、RHom(M,Z) = 0 であるから、Hn(RHom(M,Z)) = 0,Hn+1(RHom(M,Z)) = 0

が成り立つ。さらに、問題 1.21 を τ≤n−1(M) と RHom(−,Z) に対して適用することによって、
Hn(RHom(τ≤n−1(M),Z)) = 0であることが従う。従って Hom(Hn(M),Z) = Ext1(Hn(M),Z) = 0が成
り立つ。すでに示しているM ∈ Abの場合により Hn(M) = 0が従い、これは Hn(M) 6= 0に矛盾する。以
上で (i)の証明を完了する。
(ii)を示す。(i)の証明と同様に、Hn(M) 6= 0となる最大の nをとり、アーベル群の完全列

0 −−−−→ Hom(Hn(M),Z) −−−−→ Hn(RHom(M,Z)) −−−−→ Hn(RHom(τ≤n−1(M),Z))

−−−−→ Ext1(Hn(M),Z) −−−−→ Hn+1(RHom(M,Z)) −−−−→ Hn+1(RHom(τ≤n−1(M),Z))

−−−−→ 0

について考える (Ext2(Hn(M),Z) = 0であることに注意)。問題 1.21を τ≤n−1(M)と RHom(−,Z)に適用
することにより、Hn(RHom(τ≤n−1(M),Z)) = 0である。また、RHom(M,Z) ∈ Dbf (Mod(Z))であるので、
Hn(RHom(M,Z)),Hn+1(RHom(M,Z)) ∈ Modf (Z)である。従って、

Hom(Hn(M),Z), Ext1(Hn(M),Z), Hn+1(RHom(τ≤n−1(M),Z)) ∈ Modf (Z)

である。さらに、nより大きい部分のコホモロジーを見れば、

Hm(RHom(τ≤n−1(M),Z)) ∼= Hm(RHom(M,Z)), (∀m > n+ 1)

であるので、RHom(τ≤n−1(M),Z) ∈ Modf (Z)が従う。以上より、帰納的に、(ii)を示すためには、アーベ
ル群M が Hom(M,Z),Ext1(M,Z) ∈ Modf (Z) を満たすときM ∈ Modf (Z) であることを示すことが十分
である。
M をアーベル群であって Hom(M,Z) と Ext1(M,Z) がどちらも有限生成であると仮定する。ねじれ部分
を T (M) ⊂M として、F (M) :==

def
M/T (M)とおく。完全列 0→ T (M)→M → F (M)→ 0に Hom(−,Z)

を適用することにより、全射 Ext1(M,Z) → Ext1(T (M),Z) を得る。従って、Ext1(T (M),Z) は有限生成
アーベル群である。完全列 0 → Z → Q → Q /Z → 0 に Hom(T (M),−) を適用することにより、自然
な同型 Hom(T (M),Q /Z) ∼−→ Ext1(T (M),Z) を得る。T (M) に離散位相を入れて Q /Z に R /Z の双対
位相を入れることにより、Hom(T (M),Q /Z) = Homcont.(T (M),Q /Z) を連続準同型のなす位相群とみな
すと、Homcont.(T (M),Q /Z) は副有限アーベル群である。とくにコンパクトハウスドルフである。一方、
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Ext1(T (M),Z) ∼= Hom(T (M),Q /Z)はアーベル群として有限生成であるので、Homcont.(T (M),Q /Z)は有
限アーベル群であることが従う。Pontryagin双対より、T (M) ∼= Homcont.(Homcont.(T (M),Q /Z),Q /Z) =
Hom(Hom(T (M),Q /Z),Q /Z) が成り立つ。以上より、T (M)は有限生成ねじれアーベル群である。
n倍写像 n : F (M)→ F (M)を考えると、F (M)はねじれなし群なので、これは単射である。従って、n倍
写像

Ext1(F (M),Z) n−→ Ext1(F (M),Z)

は全射であり、Ext1(F (M),Z)が可除群であることが従う。n-倍写像 n :M →M を考えると、完全列

0→ Hom(M/nM,Z)→ Hom(M,Z) n−→ Hom(M,Z)

を得る。M/nM はねじれ群なので Hom(M/nM,Z) = 0であり、従って Hom(M,Z)はねじれなし群である。
仮定より、Hom(M,Z) は有限生成なので、従って自由アーベル群である。ランクを r = rank(Hom(M,Z))
と置く。r に関する帰納法によりM の有限生成性を証明する。
まず r = 0の場合について考える。このとき、Hom(M,Z) = 0であり、Ext1(M,Z)は有限生成である。完
全列

0→ T (M)→M → F (M)→ 0

により得られる完全列
0 −−−−→ Hom(F (M),Z) −−−−→ Hom(M,Z) −−−−→ Hom(T (M),Z)

−−−−→ Ext1(F (M),Z) −−−−→ Ext1(M,Z) −−−−→ Ext1(T (M),Z) −−−−→ 0

について考える。T (M) はねじれ群なので、Hom(T (M),Z) = 0 が成り立つ。よって Ext1(F (M),Z) →
Ext1(M,Z) は単射である。Ext1(M,Z) は有限生成なので、Ext1(F (M),Z) も有限生成である。一方、
Ext1(F (M),Z)は可除群なので、従って Ext1(F (M),Z) = 0が成り立つ。さらに、r = 0であるという仮定
より、Hom(M,Z) = 0であるので、Hom(F (M),Z) = 0が成り立つ。ここで (i)より、F (M) = 0が従う。
よって T (M)

∼−→ M は同型射であり、既に示した T (M)の有限生成性より、M も有限生成である。以上で
r = 0の場合の証明を完了する。
r > 0とする。Hom(M,Z)のランクが r − 1以下であるような任意のM について主張が成り立つと仮定す
る。この仮定のもとで、Hom(M,Z)のランクが r であるような任意のM に対して主張を示す。Hom(M,Z)
のランクが r であるとする。Hom(M,Z) 6= 0 であるので、0でない射 f : M → Z が存在する. f 6= 0 なの
で、あるm ∈M が存在して f(m) 6= 0が成り立つ。ここで 1 7→ mにより定義される射 Z→M を考えると、
任意の 0でない n ∈ Zに対して f(nm) = nf(m) 6= 0であることから、Z → M は単射である。この単射の
余核をM1 として、完全列

0 −−−−→ Z 1 7→m−−−−→ M −−−−→ M1 −−−−→ 0

により得られる完全列

0 −−−−→ Hom(M1,Z) −−−−→ Hom(M,Z) f 7→f(m)−−−−−→ Hom(Z,Z)

−−−−→ Ext1(M1,Z) −−−−→ Ext1(M,Z) −−−−→ 0

を考える。Hom(M,Z) ∼= Zr であるので、Hom(M1,Z)はねじれなしであり、従って自由アーベル群である。
また、f(m) 6= 0であるので、Hom(M1,Z)のランクは r − 1以下である。さらに、Ext1(M,Z)は有限生成
であるので、Ext1(M1,Z)も有限生成である。ここで帰納法の仮定より、M1 が有限生成であることが従う。
よってM も有限生成である。以上で (ii)の証明を完了し問題 1.31の解答を完了する。
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問題 1.32. kを体、X ∈ Db(Mod(k))とする。X∗ :==
def
RHom(X, k)とおく (微分が本文 [KS, Remark 1.8.11]

で与えられることを思い出そう)。

(i) X ∈ Dbf (Mod(k))と仮定する。以下の自然な同型が存在することを示せ：

X
∼−→ X∗∗ , X∗ ⊗X ∼−→ RHom(X,X).

さらに、(Xn)∗ ⊗Xn → k の直和として射 X∗ ⊗X → k を構成せよ。
(ii) X ∈ Dbf (Mod(k))と v ∈ Hom(X,X)に対して

tr(v) :==
def
∑
j

(−1)j tr(Hj(v))

と定義する。ここで tr(Hj(v)) は自己準同型 Hj(v) : Hj(X) → Hj(X) のトレースである。Y ∈
Kb(Modf (k))として、v ∈ HomKb(Modf (k))(Y, Y )とする。以下の等式を示せ：

tr(v) =
∑
j

(−1)j tr(vj).

(iii) Dbf (Mod(k))の完全三角の間の自己射

X ′ −−−−→ X −−−−→ X ′′ −−−−→

v′

y v

y v′′

y
X ′ −−−−→ X −−−−→ X ′′ −−−−→

に対して、tr(v) = tr(v′) + tr(v′′)が成り立つことを示せ。
(iv) (ii)の状況設定において、tr(v)が v の

H0(RHom(X,X)) ∼= H0(X∗ ⊗X)→ k

による像と一致することを示せ。X ∈ Dbf (Mod(k))に対して

χ(X) :==
def
∑
j

(−1)j dimHj(X)

とおく。k において χ(X) = tr(idX)が成り立つ。

Proof. (i) を示す。k は体なので、item (v) より X は perfect であり、従って、一つ目の同型は item (iii)

より従う。自然な同型射 (X−m)∗ ⊗ Xn ∼−→ Hom(X−m, Xn) を並べることによって、二重複体の同型射
X∗ ⊗ X ∼−→ Hom(X,X) を得る。Tot を取ることによって複体の同型射 X∗ ⊗ X ∼−→ RHom(X,X) を得
る。これが二つ目の同型である。最後の自然な射を構成する。0 次の部分は各 n ∈ Z に対して自然な射
(X∗)−n ⊗Xn = (Xn)∗ ⊗Xn → k を直和することにより得られる射 (X∗ ⊗X)0 → kで、他の次数は 0射と
することにより、複体の射 X∗ ⊗X → k が well-definedに定義されることを示す。そのためには、これらの
射が複体X∗ ⊗X と k (これは 0次部分のみに k があり他で 0となる複体を表す) の微分と可換することを示
すことが十分である。射

(X∗)−n ⊗Xn−1 → (X∗)−n ⊗Xn → k

(X∗)−n ⊗Xn−1 → (X∗)−n+1 ⊗Xn−1 → k
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について考える。ただしここで、最後の k への射は (f, x) 7→ f(x) により与えられる自然な射 ((X∗)−n =

(Xn)∗ に注意せよ) であり、はじめの射は本文 [KS, 式 (1.9.3)]により定義される、Totの微分を与える射で
ある。上の二つの射の合成は (f, x) ∈ (X∗)−n ⊗Xn−1 が

(f, x) 7→ (f, (−1)−ndn−1(x)) 7→ (−1)nf(dn−1(x))

と写る射である。微分 (X∗)−n → (X∗)−n+1 は (−1)n−1dn−1 : Xn−1 → Xn を合成することにより与えられ
ているので (cf. 本文 [KS, Remark 1.8.11])、下の二つの射の合成は (f, x) ∈ (X∗)−n ⊗Xn−1 が

(f, x) 7→ ((−1)n−1(f ◦ dn−1), x) 7→ (−1)n−1f(dn−1(x))

と写る射である。(−1)nf(dn−1(x)) + (−1)n−1f(dn−1(x)) = 0 であるため、従って、X∗ ⊗X → k は複体の
射である。以上で (i)の証明を完了する。
(ii)を示す。有限次元 k-線形空間の完全列の自己準同型

0 −−−−→ V1 −−−−→ V2 −−−−→ V3 −−−−→ 0

f1

y f2

y f3

y
0 −−−−→ V1 −−−−→ V2 −−−−→ V3 −−−−→ 0

があると、f1, f3 の上三角化を与える V1, V3 の基底により f2 の上三角化が与えられる。従って tr(f2) =

tr(f1) + tr(f3)が成り立つ。完全列の射

0 −−−−→ Hn(Y ) −−−−→ coker(dn−1
Y ) −−−−→ ker(dn+1

Y ) −−−−→ Hn+1(Y ) −−−−→ 0

Hn(v)

y Cn−1(v)

y yZn+1(v)

yHn+1(v)

0 −−−−→ Hn(Y ) −−−−→ coker(dn−1
Y ) −−−−→ ker(dn+1

Y ) −−−−→ Hn+1(Y ) −−−−→ 0

にこれを適用することで、tr(Cn−1(v))− tr(Hn(v)) = tr(Zn+1(v))− tr(Hn+1(v))を得る。ただし Cn(v)は
余核の間に引き起こされる自然な射である。完全列の間の射

0 −−−−→ ZnY −−−−→ Y n −−−−→ Im(dnY ) −−−−→ 0

Zn(v)

y vn
y yBn(v)

0 −−−−→ ZnY −−−−→ Y n −−−−→ Im(dnY ) −−−−→ 0

に適用することにより、tr(Bn(v)) + tr(Zn(v)) = tr(vn)を得る。完全列の間の射

0 −−−−→ Hn(Y ) −−−−→ coker(dn−1
Y ) −−−−→ Im(dnY ) −−−−→ 0

Hn(v)

y Cn−1(v)

y yBn(v)

0 −−−−→ Hn(Y ) −−−−→ coker(dn−1
Y ) −−−−→ Im(dnY ) −−−−→ 0

に適用することにより、tr(Bn(v)) = tr(Cn−1(v))− tr(Hn(v))を得る。ただし Cn(v)は余核の間に引き起こ
される自然な射である。従って、∑

j

(−1)j tr(vj) =
∑
j

(−1)j
(
tr(Bj(v)) + tr(Zj(v))

)
=
∑
j

(−1)j
(
tr(Cj−1(v))− tr(Hj(v)) + tr(Zj(v))

)
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=
∑
j

(−1)j
(
tr(Cj−1(v)) + tr(Cj−2(v))− tr(Hj−1(v))

)
=
∑
j

(−1)j+1 tr(Hj−1(v))

=
∑
j

(−1)j tr(Hj(v)) = tr(v)

が成り立つ。以上で (ii)の証明を完了する。
(iii)はコホモロジーをとることによって得られる長完全列を短完全列に分解して (ii)の証明の最初で示した
等式を用いると証明できる。
(iv) を示す。f : X → Y の定める H0(RHom(X,Y )) の元は、各 i について f i : Xi → Y i の定める

Hom(Xi, Y i) の元を ((−1)if i) ∈
⊕

iHom(Xi, Y i) と並べた元である。実際、RHom(X,Y ) の微分は、第
一変数に関しては (−1)idiX を合成することによって与えられるので、diY ◦ ((−1)if i = f i+1 ◦ ((−1)idiX)が
成り立ち、((−1)if i) は H0(RHom(X,Y )) の元を定める。v : X → X を複体の自己射とする。各 j に対
する vj : Xj → Xj のトレースは Hom(Xj , Xj) ∼= (Xj)∗ ⊗ Xj → k による vj の像が定める k の元と一
致する。従って、v の定める H0(RHom(X,X)) の元、すなわち ((−1)ivi) ∈

⊕
iHom(X,X) の自然な射

H0(RHom(X,X))→ k による像は∑j(−1)j tr(vj)に他ならない。よって (iv)の最初の主張が従う。また、
dim(V ) = tr(idV )であるので、(ii) より χ(X) =

∑
j(−1)j dim(Hj(X))が従う。以上で (iv) の証明を完了

し、問題 1.32の解答を完了する。

問題 1.33. kを体、V を k-線形空間とする。自己準同型 u : V → V が trace classであるとは、ある nに対し
て dim(un(V )) <∞が成り立つことと定義する。u : V → V が trace classであるとき、tr(u) :==def tr(u|un(V ))

と定義する。

(i) tr(u)の定義は nに依存しないことを示せ。
(ii) V

u−→W
v−→ V を k-線形空間の射の列とする。u ◦ vが trace class であることと v ◦ uが trace class で

あることは同値であることを示せ。さらにこのとき tr(u ◦ v) = tr(v ◦ u)が成り立つことを示せ。
(iii) k-線形空間の完全列の自己準同型

0 −−−−→ V1 −−−−→ V2 −−−−→ V3 −−−−→ 0

v1

y v2

y v3

y
0 −−−−→ V1 −−−−→ V2 −−−−→ V3 −−−−→ 0

について、v2 が trace class であることと v1, v3 がどちらも trace class であることは同値であること
を示せ。さらにこのとき、tr(v2) = tr(v1) + tr(v3)が成り立つことを示せ。

Proof. (i) を示す。まず x 7→ [u : V → V ] により V を k[x]-加群と考える。十分大きい n に対して
dim(Im(un)) < ∞ であるので、n � 0 で Im(un) = Im(un+1) となる。従って、自然な射 Im(un) ⊂ V →
V ⊗k k[x, 1/x] は n � 0 で同型射であり、とくに V ⊗k k[x, 1/x] は k-線形空間として有限次元である。u
のトレースは k-線形空間 V ⊗k k[x, 1/x] 上への x の作用にしか依存しないため、n の取り方によらずに
well-definedである。以上で (i)の証明を完了する。
(ii)を示す。v ◦ (u ◦ v)n ◦ u = (v ◦ u)n+1 なので u ◦ v が trace class であることと v ◦ uが trace class で
あることは同値である。v ◦ u : V → V と u ◦ v : W → W によって V,W をそれぞれ k[x]-加群と考えたと
き、u : V → W と v : W → V は k[x]-加群の射である。さらに、u ◦ v か v ◦ uの一方が trace class であれ

35



ば、十分大きい nに対して v ◦ u : (v ◦ u)n(V )→ (v ◦ u)n(V )と u ◦ v : (u ◦ v)n(W )→ (u ◦ v)n(W )はいず
れも全単射であり、とくに k[x]-加群の同型射である。これは v ◦ uと u ◦ v の固有値の和が等しいことを意味
する。以上で (ii)の証明を完了する。
(iii)を示す。v1, v2, v3 によって V1, V2, V3 を k[x]-加群とみなす。v1, v2, v3 が k-線形空間の完全列の射を成
すことから、

0 −−−−→ V1 −−−−→ V2 −−−−→ V3 −−−−→ 0

は k[x]-加群の完全列である。k[x, 1/x]をテンソルすると、k[x, 1/x]は k[x]上平坦であるから、k[x, 1/x]-加
群の完全列

0 −−−−→ V1 ⊗k[x] k[x, 1/x] −−−−→ V2 ⊗k[x] k[x, 1/x] −−−−→ V3 ⊗k[x] k[x, 1/x] −−−−→ 0

を得る。vi が trace class であることは、Vi ⊗k[x] k[x, 1/x]が長さ有限であることと同値であるので、以上よ
り v2 が trace class であることと v1, v3 がどちらも trace class であることが同値であることが従う。vi のト
レースは Vi ⊗k[x] k[x, 1/x]への vi の作用 (つまり xの作用) のトレースであるから、Vi ⊗k[x] k[x, 1/x]たち
の成す短完全列を考えることによって、tr(v2) = tr(v1) + tr(v3)であることが従う (cf. item (ii)の証明の一
番最初の部分など)。以上で (iii)の証明を完了し、問題 1.33の解答を完了する。

問題 1.34. k を体、X ∈ Dbf (Mod(k))とする。

bi(X) :==
def

dim(Hi(X)), b∗i (X) :==
def

(−1)i
∑
j≤i

(−1)jbj(X)

とおく。Y → X → Z
+1−−→ を Dbf (Mod(k)) の完全三角とする。以下の式を示せ (χ(X) の定義については

item (iv)を参照)：

χ(X) = χ(Y ) + χ(Z),

b∗i (X) ≤ b∗i (Y ) + b∗i (Z).

Proof. 一つ目の等式は ToDo: ref: 1.32.3, 1.32.4 より直ちに従う。二つ目の不等式を示す。コホモロ
ジーをとると、長完全列

δi−1

−−−−→ Hi−1(Y ) −−−−→ Hi−1(X) −−−−→ Hi−1(Z)

δi−−−−→ Hi(Y ) −−−−→ Hi(X) −−−−→ Hi(Z)

δi+1

−−−−→ · · ·

を得る。従って、とくに

0 ≤ dim(Im(δi+1))

= bi(Z)− bi(X) + bi(Y )− bi−1(Z) + · · ·

=
∑
j≤i

(−1)i−jbj(Z)−
∑
j≤i

(−1)i−jbj(X) +
∑
j≤i

(−1)i−jbj(Y )

= b∗i (Z)− b∗i (X) + b∗i (Y )

を得る。よって二つ目の不等式が従う。以上で問題 1.34の解答を完了する。

問題 1.35. Ĉ = SetC
op を前層圏とする。
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(i) I を有向集合、Xi を I で添字付けられた圏 C の図式とする。X 7→ colimi∈I HomC(X,Xi) により定ま
る Ĉ の対象 “ colim ”i∈IXi (この記号の定義は [KS, Definition 1.11.4]を参照) は I で添字付けられた
図式 hXi

∈ Ĉ の余極限であることを示せ。より詳しく、F ∈ Ĉ に対して以下の自然な同型を示せ：

HomĈ(“ colim ”i∈IXi, F ) ∼= colim
i∈I

F (Xi).

(ii) Yj ∈ C を有向集合 J で添字付けられた図式とする。以下の自然な同型を示せ：

HomĈ(“ colim ”i∈IXi, “ colim ”j∈JYj) ∼= lim
i∈I

colim
j∈J

HomC(Xi, Yj).

注意. 本文では (ii)の左辺の右側の “ colim ”がたんに colimと表記されていたが、これは “”をつけ忘れた？

Proof. (i) を示す。函手圏の余極限は各点ごとに計算されるので “ colim ”i∈IXi
∼= colimi∈I hXi

が従う。さ
らにこれがわかると、余極限の定義と米田の補題より、

HomĈ(“ colim ”i∈IXi, F ) ∼= HomĈ(colimi∈I
Xi, F )

∼= lim
i∈I

HomĈ(hXi
, F )

∼= lim
i∈I

F (Xi)

が従う。以上で (i)の証明を完了する。
(ii)を示す。素直に計算すると、

HomĈ(“ colim ”i∈IXi, “ colim ”j∈JhYj
)
⋆∼= HomĈ(colimi∈I

hXi
, colim
j∈J

hYj
)

∗∼= lim
i∈I

HomĈ(hXi
, colim
j∈J

hYj
)

♠∼= lim
i∈I

(colim
j∈J

hYj )(Xi)

♣∼= lim
i∈I

colim
j∈J

HomC(Xi, Yj)

となる。ただしここで、? の部分に (i) を用い、∗ の部分に余極限の定義を用い、♠ の部分に米田の補題を
用い、♣ の部分に函手圏での余極限が各点ごとに計算されることを用いた。以上で (ii) の証明を完了し、問
題 1.35の解答を完了する。

問題 1.36. A をネーター環、Modf (A) を有限生成 A-加群の圏とする。(Xi, ρij) を有向集合で添字付けら
れた Modf (A)の図式とする。Mod(A)での余極限 colimi∈I Xi が Modf (A)に属すると仮定すると、それは
“ colim ”i∈IXi の表現対象であることを示せ。

注意. もとの文を引用するとこうである (第一版)：
Let A be a Noetherian ring, and let Modf (A) be the category of finitely generated A-modules. Let

{Xi, ρi,j} be an inductive system in this category, indexed by a directed ordered set I. Prove that if

lim−→j
Xj exists in Modf (A), then it represents “ lim−→j

”Xj .

これをそのまま読むと、仮定されていることは「Modf (A)で余極限 colimi∈I Xi が存在する」ということ
である。しかし、だとすると、問題 1.36 は本当に正しいだろうか。たとえば A = Z として、有向集合とし
て Z のイデアルのなす集合を包含関係の逆向きで順序を入れたものを考え、Xi :==

def
( 1n Z)/Z と定義して、

ρn,nm を自然な包含射とする。M を有限生成加群、fn : Xn → M を ρn,nm たちと両立的な射とする。この
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とき、fn(1/n)はM の可除元を与える。M は有限生成加群であるから、従って fn(1/n) = 0である。これは
fn = 0を意味する。従って、どのような ρn,nm たちと両立的な射の族 fn : Xn → M も 0を一意的に経由す
る。これはModf (A)における図式 Xn の余極限が 0であることを意味している。とくにModf (A)における
図式Xn には余極限が存在する。一方で “ colim ”nXn は自明な前層ではないので 0はその表現対象ではない。
これは問われていることに反する。従って、本当に仮定すべきことは、「Mod(A)における余極限がModf (A)

に属する」ということであろう。実際には、(ここで示すように) Mod(A) における余極限を X としたとき、
Modf (A)上の前層として “ colim ”jXj

∼= HomA(−, X)が成り立つ (標語的に言えば、有限表示加群は加群の
圏のコンパクト対象である、ということ)。

Proof. X :==
def

colimi∈I Xi (Mod(A)における余極限) とおいて、ρi : Xi → X を自然な射とする。問題 1.36

を示すためには、M を有限生成 A-加群として、自然な射 ϕ : colimi∈I HomA(M,Xi)→ HomA(M,X) が全
単射であることを示すことが十分である。
まず ϕが単射であることを示す。ϕで送って 0である colimi∈I HomA(M,Xi)の元をとり、fi : M → Xi

を、その元を代表する射とする。ϕで送って 0であるので、ρi ◦ fi = 0である。M は有限生成なので、有限
個の m1, · · · ,mr ∈ M によって生成される。fi(mk) ∈ Xi, (k = 1, · · · r)は ρi で送って 0になるので、ある
ik ≥ iが存在してXik において ρi,ik(fi(mk)) = 0である。I は有向集合であるから、i1, · · · , ir の上界 j が存
在する。このとき ρi,j(fi(mk)) = 0, (∀k = 1, · · · , r) であるので、ρi,j ◦ fi = 0である。fi : M → Xi によっ
て代表される colimi∈I HomA(M,Xi)の元は ρi,j ◦ fi : M → Xj によって代表される元でもあるので、これ
は 0である。以上より ϕが単射であることが従う (ここまで Aのネーター性は必要ない)。
ϕが全射であることを示す。f : M → X を A-加群の射とする。全射 p : Ar → M を一つとる。Aはネー
ターであるので、ker(p)は有限生成である (ネーター性が本質的に必要なのはこの部分、すなわち、有限生成
加群が有限表示であるという部分)。ek ∈ Ar を k 番目の座標のみ 1で他が 0となる元とする。X は Xi たち
の filtered colimit であるから、f(p(ek)) ∈ X に対してある ik ∈ I が存在して f(p(ek)) ∈ ρik(Xik)が成り
立つ。I は有向集合であるので、i1, · · · , ir ≤ j となる j ∈ I が存在する。このとき f(p(Ar)) ⊂ ρj(Xj)が成
り立つ。Ar は射影加群であるから、全射 ρj : Xj → ρj(Xj) に沿って f ◦ p : Ar → ρj(Xj) がリフトして、
f ◦p = ρj ◦gとなる射 g : Ar → Xj が存在する。ker(p)の生成元を a1, · · · , as ∈ ker(p)とする。ak ∈ ker(p)

であるから、ρj(g(ak)) = f(p(ak)) = f(0) = 0 が成り立つ。従って、各 k = 1, · · · , sに対してある i′k ≥ j が
存在して、Xi′k

で ρj,i′k(g(ak)) = 0が成り立つ。I は有向集合であるので、i′1, · · · , i′s ≤ j′ となる j′ ∈ I が存
在する。このとき ρj,j′(g(ak)) = 0, (∀k = 1, · · · , s)が成り立つ。従って、ρj,j′ ◦g : Ar → Xj′ は p : Ar →M

を一意的に経由して、ρj,j′ ◦ g = h ◦ pとなる射 h :M → Xj′ を引き起こす。このとき

ρj′ ◦ h ◦ p = ρj′ ◦ ρj,j′ ◦ g = ρj ◦ g = f ◦ p

が成り立つ。pはエピなので、ρj′ ◦ h = f が成り立つ。従って、hにより代表される colimi∈I HomA(M,Xi)

の元を [h]と書けば、ϕ([h]) = f が成り立つ。以上で ϕが全射であることの証明を完了し、問題 1.36の解答
を完了する。

問題 1.37. C を加法圏とする。End(C) を idC : C → C の自己射のなす集合とする。すなわち、End(C) :==def

Hom[C,C](idC)とする。

(i) End(C)は可換環であることを示せ。
(ii) Aを環とする。End(Mod(A))は Aの中心 Z(A)と同型であることを示せ。
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(iii) Aを可換環として、環準同型 A→ End(C)が与えられているとする。このとき加法圏 C を A上の加法
圏という。C が A上の加法圏であるとき、HomC(X,Y )は合成が双線型となるような A-加群の構造を
持つことを示せ。

(iv) Aをネーター環、C を A上のアーベル圏とする。
(a) M ∈ Modf (A) と X ∈ C に対して函手 Y 7→ HomA(M,HomC(X,Y )), (Y ∈ C) は表現可能であ
ることを示せ。この表現対象を X ⊗AM と書く。

(b) ⊗A : C ×Modf (A)→ C は右完全な双函手であることを示せ。
(c) ⊗A は左導来函手 ⊗LA : D−(C)× D−(Modf (A))→ D−(C) を持つことを示せ。
(d) HomA(−,−) : Modf (A)op × C → C についても同様の議論を行え。

Proof. (i) を示す。f : idC → idC は各M ∈ C に対する自己射 fM : M → M の族で g : M → N に対して
g ◦ fM = fN ◦ g を満たすものである。従って、二つの f1, f2 : idC → idC に対して族 (f1M + f2M )M∈C は idC

の自己射となるので、これによって加法が定義される。乗法を合成によって定義すると、C が加法圏であるこ
と、すなわち合成が双線型であることから、End(C)は環の公理を満たす。可換であることを示すことが残っ
ている。f, g : idC → idC とM ∈ C を任意にとると、g が自然変換であることから、射 fM :M →M に対し
て等式 fM ◦ gM = gM ◦ fM を満たす。従って f ◦ g = g ◦ f が成り立ち、End(C)は合成を乗法として可換で
ある。以上で (i)の証明を完了する。
(ii) を示す。a ∈ Z(A) に対して、一斉に a 倍をする射M → M は任意の g : M → N と m ∈ M に対し
て g(am) = ag(m)を満たすので End(Mod(A))の元を定める。こうして写像 Z(A)→ End(Mod(A))ができ
る。この写像は明らかに環準同型である。単射であることを示すために、a ∈ Z(A)が End(Mod(A))で 0で
あると仮定する。すると a倍写像 A→ Aが 0射であるため、a = 0が従う。よって Z(A)→ End(Mod(A))

は単射である。全射であることを示すために、f : idMod(A) → idMod(A) を任意にとる。fA : A → A によっ
て a :==

def
fA(1) とおく。fM が a 倍写像であることを示せば、Z(A) → End(Mod(A)) が全射であることが

従う。M ∈ Mod(A) を任意にとる。全射 p : A⊕I → M をひとつ選ぶ。f : idMod(A) → idMod(A) が自然変
換であることから、fA⊕I は各座標ごとに fA が並んでいる射であり、それは a 倍写像に他ならない。また
fM ◦ p = p ◦ fA⊕I = p(a倍) = ap が成り立つ。ここで pはエピなので、fM も a-倍写像であることが従う。
以上で Z(A)→ End(Mod(A))が全射であることが従い、(ii)の証明を完了する。
(iii)を示す。ϕ : A→ End(C)を環準同型とする。a ∈ Aに対して自然変換 ϕ(a) : idC → idC が対応してい
る。HomC(X,Y )に ϕ(a)Y : Y → Y を合成することによって A-加群の構造を入れる (これが HomC(X,Y )

の加法と両立的であることは明らかである)。このとき、f : X → Y に対して f ◦ϕ(a)X = ϕ(a)Y ◦f であるか
ら、この A-加群の構造は ϕ(a)X : X → X を合成することによる A-加群の構造と等しい。また、X,Y, Z ∈ C
と a ∈ A, f ∈ HomC(X,Y ), g ∈ HomC(Y, Z)に対して、

g ◦ (a · f) = g ◦ (f ◦ ϕ(a)X) = (g ◦ f) ◦ ϕ(a)X = a · (g ◦ f)

が成り立つので、g を合成する射 HomC(X,Y )→ HomC(X,Z) は A-加群の構造と両立的である。同じく

(a · g) ◦ f = (ϕ(a)Z ◦ g) ◦ f = ϕ(a)Z ◦ (g ◦ f) = a · (g ◦ f)

が成り立つので、f を合成する射 HomC(Y, Z)→ HomC(X,Z) は A-加群の構造と両立的である。以上より C
の合成は A-双線型であり、(iii)の証明を完了する。
(iv) を示す。(a) を示す。M = A のときは自然に HomA(A,HomC(X,Y )) ∼= HomC(X,Y ) であるから
明らかにこの函手が表現可能であり X ⊗A A ∼= X が成り立つ。M が A の有限直和の場合も同様にして
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HomA(A
n,HomC(X,Y )) ∼= HomC(X,Y )n ∼= HomC(X

n, Y ) が成り立つので、この函手は表現可能であり
X ⊗AAn ∼= Xn が成り立つ。一般の有限生成加群M に対して、所望の表現可能性を証明する。Aはネーター
であるから、完全列 An → Am →M → 0が存在する。このとき

0→ HomA(M,HomC(X,Y ))→ HomA(A
m,HomC(X,Y ))→ HomA(A

n,HomC(X,Y ))

も完全である。Y に関して函手的に HomA(A
m,HomC(X,Y )) ∼= HomC(X

m, Y ) が成り立つので、A-加群の
完全列

0→ HomA(M,HomC(X,Y ))→ HomC(X
m, Y )→ HomC(X

n, Y )

を得る。従って Y に関して函手的に HomA(M,HomC(X,Y )) ∼= HomC(coker(X
m → Xn), Y ) が成り立つ。

よって Y 7→ HomA(M,HomC(X,Y ))は表現可能であることが従う。以上で (a)の証明を完了する。
(b)を示す。M,X に関しての双函手

C ×Modf (A)→ Hom(C,Mod(A)), (X,M) 7→ [Y 7→ HomA(M,HomC(X,Y ))]

の表現対象として X ⊗AM が定義されているので、米田の補題より ⊗A : C ×Modf (A) → C は双函手であ
る。さらに HomA(−, ∗)が左完全であることと HomC(−, Y )が左完全であることから、⊗A はいずれの成分
についても右完全であることが従う。以上で (b)の証明を完了する。
(c) を示す。P ⊂ Modf (A)op を射影加群からなる部分圏とする。X ∈ C とする。P が (X ⊗A (−))op :

Modf (A)op → Cop に対して injectiveであることを示す。まず P ⊂ Modf (A)op は明らかに本文の条件 [KS,

(1.7.5)] (=本文 [KS, Definition 1.8.2 (i)]) を満たす。次に有限生成加群の完全列 0→M1 →M2 →M3 → 0

でM2,M3 が射影加群であるとき、この完全列は分裂してM1 は射影加群M2 の直和因子となるのでM1 も
射影加群である。従って P は本文 [KS, Definition 1.8.2 (ii)] を満たす。0 → P1 → P2 → P3 → 0を射影加
群の完全列とする。これは分裂するので、各 Y に対して

0→ HomA(P3,HomC(X,Y ))→ HomA(P2,HomC(X,Y ))→ HomA(P1,HomC(X,Y ))→ 0

も分裂完全列である。従って、

0→ X ⊗A P1 → X ⊗A P2 → X ⊗A P3 → 0

も分裂完全列であり、P は本文 [KS, Definition 1.8.2 (iii)] を満たす。以上より P は (X ⊗A (−))op :

Modf (A)op → Cop に対して injectiveなModf (A)の部分圏である。X ∈ Ch−(C)を 0と擬同型な複体、P を
射影加群とする。P はAnの直和因子であるとする。するとX⊗AP はXnの直和因子であるから、X が 0と
擬同型であることから、X ⊗A P も 0と擬同型である。従って、函手 (⊗A)op : Cop×Modf (A)op → Cop の引
き起こす三角函手 K+(Cop)× K+(Modf (A)op)→ K+(Cop) と I = K+(P) ⊂ K+(Modf (A)op) に対して本文
[KS, Corollary 1.10.5]を用いることにより、(⊗A)op の右導来函手 D+(Cop)× D+(Modf (A)op)→ D+(Cop)
が存在することが従う。よって ⊗A の左導来函手 ⊗LA : D−(C)× D−(Modf (A))→ D−(C) が存在することが
従い、(c)の証明を完了する。
(d)を示す。M ∈ Modf (A)op とX ∈ C に対して Cop → Mod(A), Y 7→ HomA(M,HomC(Y,X)) が表現可
能であることを示す。まずM = Aのときは明らかに X が表現対象であり、M = An の場合も明らかに Xn

が表現対象である。一般のM に対して完全列 An → Am →M → 0をとって完全列

0→ HomA(M,HomC(Y,X))→ HomA(A
m,HomC(Y,X))→ HomA(A

n,HomC(Y,X))
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作ると、完全列
0→ HomA(M,HomC(Y,X))→ HomC(Y,X

m)→ HomC(Y,X
n)

を得るので、Homの左完全性より Y についての自然な同型 HomA(M,HomC(Y,X)) ∼= HomC(Y, ker(X
m →

Xn)) を得る。従って Cop → Mod(A), Y 7→ HomA(M,HomC(Y,X)) は表現可能函手である。この表現対象
を HomA(M,X) と表す。X,Y,M についての自然な同型 HomC(X ⊗A M,Y ) ∼= HomC(X,HomA(M,Y ))

が存在するので、HomA(M,−) は (−) ⊗A M の右随伴函手であり、従って左完全である。また X,Y に
ついての自然な同型 HomC(X,HomA(−, Y )) ∼= HomA(−,HomC(X,Y )) は HomA(−, Y ) の左完全性を示
している。従って HomA(−,−) は左完全な双函手である。射影加群のなす部分圏 P ⊂ Modf (A)op が本
文 [KS, Definition 1.8.2 (i) (ii)] を満たすことはすでに (c) の証明の中で確認している。射影加群の完
全列は分裂するので、それを HomA(−,HomC(X,Y )) に入れて得られる列も分裂完全列である。従って
HomA(−, Y ) に射影加群の完全列を入れると分裂完全列が得られる。このことは P が本文 [KS, Definition

1.8.2 (iii)] を HomA(−, Y ) に対して満たすことを意味している。従って P ⊂ Modf (A)op は HomA(−, Y )-

injective である。さらに Y が 0 と擬同型で P が射影加群であるとき、P ⊂ An が直和因子であるとすれ
ば、HomA(P, Y ) ⊂ Y n も直和因子であるから、Y が 0 と擬同型であることから、HomA(P, Y ) も 0 と擬
同型であることが従う。よって本文 [KS, Corollary 1.10.5] を適用することで、HomA(−,−) の右導来函手
RHomA(−,−)が存在することが従う。以上で (d)の証明を完了し、(iv)の証明を完了し、問題 1.37の解答
を完了する。

問題 1.38. I, I ′ を filteredな圏として、ϕ : I → I ′ を函手とする。ϕが cofinalであるとは、以下の条件を
満たすことを言う：

(i) 任意の i′ ∈ I ′ に対してある i ∈ I と射 i′ → ϕ(i)が存在する。
(ii) 任意の i ∈ I と i′ ∈ I ′ と射 (f : ϕ(i)→ i′) ∈ I ′ に対してある射 (g : i→ i1) ∈ I と (h : i′ → ϕ(i1)) ∈

I ′ が存在して h ◦ f = g となる。

C を圏、I, I1 を filteredな圏、F : I → C, G : Iop → C を函手、ϕ : I1 → I を cofinalとする。自然な射

colim(F ◦ϕ)→ colimF, “ colim ”(F ◦ϕ)→ “ colim ”F, limG→ lim(G ◦ϕ), “ lim ”G→ “ lim ”(G ◦ϕ)

はいずれも同型射であることを示せ。

Proof. colim(F ◦ ϕ)→ colimF が同型射であることがわかれば、C → Ĉ = SetC
op を合成して函手 I → Ĉ に

対してその事実を適用することにより “ colim ”(F ◦ϕ)→ “ colim ”F が同型射であることが従う。limに関し
ても同様である。さらに colim(F ◦ ϕ) → colimF が同型射であることがわかれば、Gop : I → Cop に対して
その事実を適用することにより limG→ lim(G ◦ϕ)が同型射であることが従う。以上より、問題 1.38を示す
ためには、colim(F ◦ ϕ)→ colimF が同型射であることを示すことが十分である。
X ∈ C を任意にとる。colim(F ◦ ϕ)→ colimF が同型射であることを示すためには、米田の補題より、自
然な射 Ψ : limi∈I HomC(F (i), X) → limi1∈I1 HomC(F (ϕ(i1)), X) が全単射であることを示すことが十分で
ある。(fi), (gi) ∈ limi∈I HomC(F (i), X) が Ψ((fi)) = Ψ((gi)) を満たすとする。このとき、各 i1 ∈ I1 に対
して fφ(i1) = gφ(i1) が成り立つ。i ∈ I を任意にとる。ϕ : I1 → I は cofinalであるから、一つめの条件より、
ある i1 ∈ I1 と射 p : i → ϕ(i1) が存在する。(fi), (gi) はそれぞれ limi∈I HomC(F (i), X) の元であるから、
fφ(i1) ◦ F (p) = fi, gφ(i1) ◦ F (p) = gi を満たす。fφ(i1) = gφ(i1) であるので、従って fi = gi が成り立つ。こ
れは (fi) = (gi)を意味し、よって Ψは単射である。
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Ψ が全射であることを示す。(hφ(i1))i1∈I1 ∈ limi1∈I1 HomC(F (ϕ(i1)), X) を任意にとる。各 i ∈ I に
対して一つ i1 ∈ I1 と射 p1 : i → ϕ(i1) を選ぶ (ϕ が cofinal であることの一つめの条件を用いる)。
hi :==

def
hi1 ◦ F (p1) と定義する。まずこれが i1, p1 の取り方に依存しないことを示す。そのためには、別

の p2 : i → ϕ(i2) に対して hi1 ◦ F (p1) = hi2 ◦ F (p2) が成り立つことが十分である。I1 は filtered であ
るから、i3 ∈ I1 と a1 : i1 → i3, a2 : i2 → i3 が存在する。I は filtered であるから、二つの並行な射
ϕ(a1) ◦ p1, ϕ(a2) ◦ p2 : i → ϕ(i3) に対してある射 g : ϕ(i3) → i′ が存在して g ◦ ϕ(a1) ◦ p1 = g ◦ ϕ(a2) ◦ p2
が成り立つ。さらに ϕ は cofinal であるから、g : ϕ(i3) → i′ に二つめの条件を用いることで、ある
(b : i3 → i4) ∈ I1 と (g′ : i′ → ϕ(i4)) ∈ I が存在して g′ ◦ g = ϕ(b)が成り立つ。このとき

ϕ(b ◦ a1) ◦ p1 = g′ ◦ g ◦ ϕ(a1) ◦ p1 = g′ ◦ g ◦ ϕ(a2) ◦ p2 = ϕ(b ◦ a2) ◦ p2

が成り立つ。p4 :==
def
ϕ(b ◦ a1) ◦ p1 とおけば、

hi1 ◦ F (p1) = hi4 ◦ F (ϕ(b ◦ a1) ◦ p1) = hi4 ◦ F (ϕ(b ◦ a2) ◦ p2) = hi2 ◦ F (p2)

が成り立つ。以上で hi の定義が p1 : i → ϕ(i1) の取り方に依存しないことが示された。次に (hi)i∈I が
limHomC(F (i), X)の元を定めることを示す。射 (p : i → i′) ∈ I を任意にとる。q : i′ → ϕ(i1)を一つ選べ
ば、hi の定義が p1 : i→ ϕ(i1)の取り方に依存しないことから、

hi = hi1 ◦ F (q ◦ p) = hi1 ◦ F (q) ◦ F (p) = hi′ ◦ F (p)

が成り立つ。これは (hi)i∈I が F (p)たちと両立的であることを意味し、従って (hi)i∈I は limHomC(F (i), X)

の元を定める。各 i1 ∈ I に対して hφ(i1) = hi1 であるから、Ψ((hi)i∈I) = (hi1)i1∈I1 が成り立つ。よって Ψ

は全射である。以上で Ψが全単射であることが従い、問題 1.38の証明を完了する。

問題 1.39. C をアーベル圏とする。X,Y ∈ Db(C)に対して Extj(X,Y ) :==
def

HomD(C)(X,Y [j])とおく。

(i) X,Y ∈ C として n ≥ 1とする。完全列

E : 0→ Y → Zn → Zn−1 → · · · → Z1 → X → 0

が元 C(E) ∈ Extn(X,Y )を定めることを示せ。この完全列を X の Y による n-拡大という。
(ii) 任意の Extn(X,Y )の元は C(E)の形で表すことができることを示せ。
(iii) E′ : 0 → Y → Z ′

n → · · · → Z ′
1 → X → 0を別の拡大とする。C(E) = C(E′)であるための必要十分

条件は、ある拡大 E′′ : 0→ Y → Z ′′
n → · · · → Z ′′

1 → X → 0 と以下の可換図式が存在することである
ということを示せ：

Y −−−−→ Zn −−−−→ · · · −−−−→ Z1 −−−−→ X∥∥∥ x x ∥∥∥
Y −−−−→ Z ′′

n −−−−→ · · · −−−−→ Z ′′
1 −−−−→ X∥∥∥ y y ∥∥∥

Y −−−−→ Z ′
n −−−−→ · · · −−−−→ Z ′

1 −−−−→ X.

Extn(X,Y )をしばしばYoneda extensionという。

Proof. (i)を示す。Zi :==def Z−i+1 と定義して、完全列 E から X,Y を取り除いた複体を

Z = (· · · 0→ Z−n+1 → · · · → Z0 → 0→ · · · )
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と表す。このとき τ≤n−1(Z) = Y [n− 1]であり、τ≥0(Z) = X である。また、Z は −(n− 2)次から −1次で
完全なので、Y [n − 1] → Z → X

+1−−→は完全三角である。これに函手 HomD(C)(X,−)を適用することによ
り、射 HomD(C)(X,X) → HomD(C)(X,Y [n]) = Extn(X,Y )を得る。idX の行き先を C(E)とすれば良い。
以上で (i)の証明を完了する。
(ii) を示す。f ∈ Extn(X,Y ) を一つとる。定義より Extn(X,Y ) = HomD(C)(X,Y [n]) であるので、f
は D(C) の射 f : X → Y [n] とみなせる。f を D(C) の完全三角 X

f−→ Y [n] → Z
+1−−→ に伸ばす。この

とき Y [n − 1] → Z[−1] → X
+1−−→ も完全三角である。コホモロジーをとれば、Hi(Z[−1]) は n − 1 次で

Hn−1(Z[−1]) ∼= Y、0次で H0(Z[−1]) ∼= X、他は 0である。従って

E : 0→ [Y ∼= Hn(Z)]→ Z−n → · · · → Z−1 → [X ∼= H−1(Z)]→ 0

は完全である。完全三角 Y [n − 1] → Z[−1] → X
+1−−→ は X

f−→ Y [n] → Z
+1−−→ を −1 方向に二つずらし

た完全三角なので、HomD(C)(X,−) に入れると idX の行き先は f : X → Y [n] に他ならない。このことは
f = C(E)を意味している。以上で (ii)の証明を完了する。
(iii)を示す。E,E′ から (i)のように定義した複体をそれぞれ Z,Z ′ と表す。十分性を示す。E′′ から (i)の
ように定義した複体を Z ′′ と表す。(i)の証明より、D(C)の完全三角とその間の射

Y [n− 1] −−−−→ Z −−−−→ X
+1−−−−→∥∥∥ x ∥∥∥

Y [n− 1] −−−−→ Z ′′ −−−−→ X
+1−−−−→∥∥∥ y ∥∥∥

Y [n− 1] −−−−→ Z ′ −−−−→ X
+1−−−−→

を得る。これを HomD(C)(X,−)に入れると、アーベル群の可換図式

HomD(C)(X,X) HomD(C)(X,X) HomD(C)(X,X)

δ

y δ′′

y yδ′
HomD(C)(X,Y [n]) HomD(C)(X,Y [n]) HomD(C)(X,Y [n])

を得る。ここで定義より C(E) = δ(idX), C(E′) = δ′(idX)であるが、上の図式が可換であることは δ = δ′′ =

δ′ を意味するので、よって C(E) = δ(idX) = δ′(idX) = C(E′)が成り立つ。以上で十分性の証明を完了する。
必要性を示す。f = C(E) = C(E′) ∈ Extn(X,Y ) = HomD(C)(X,Y [n]) とおく。f : X → Y [n] を D(C)
の完全三角 X

f−→ Y [n]→ Z ′′ +1−−→に伸ばす。(ii)の証明と同様に、このとき

0→ Y → Z ′′−n → · · · → Z ′′−1 → X → 0

は完全である。Z ′′ の −n− 1次以下と 0次以上を 0で置き直した複体を再び Z ′′ で表す。すると上の完全列
により Y [n − 1] → Z ′′[−1] → X

+1−−→ が K(C) の完全三角であることが従う。f = C(E) であるから、三角
圏の公理 (本文 [KS, Proposition 1.4.4 (TR4)]) より K(C) の射 Z ′′ → Z が存在して、idX , idY [n] によって
X

f−→ Y [n]→ Z ′′ +1−−→からX
f−→ Y [n]→ Z

+1−−→への完全三角の射を形成する。同様に、f = C(E′)であるか
ら、完全三角の射を形成するような Z ′′ → Z ′ も存在する。よって K(C)の擬同型からなる図式 Z ← Z ′′ → Z

を得る。これらの射を代表する Ch(C) の擬同型からなる図式 Z ← Z ′′ → Z を C の図式として書き直すと、
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可換図式
H−n(Z) −−−−→ Z−n −−−−→ · · · −−−−→ Z−1 −−−−→ H−1(Z)x x x x
H−n(Z ′′) −−−−→ Z ′′−n −−−−→ · · · −−−−→ Z ′′−1 −−−−→ H−1(Z ′′)y y y y
H−n(Z ′) −−−−→ Z ′−n −−−−→ · · · −−−−→ Z ′−1 −−−−→ H−1(Z ′).

を得る。H−n(Z) ∼= H−n(Z ′′) ∼= H−n(Z ′) ∼= Y と H−1(Z) ∼= H−1(Z ′′) ∼= H−1(Z ′) ∼= X に注意すれば所
望の可換図式を得る。以上で必要性の証明を完了し、(iii)の証明を完了し、問題 1.39の解答を完了する。
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2 Sheaves

本文では、局所コンパクト空間であるという場合には、ハウスドルフ性を常に仮定していることに注意して
おく (cf. 本文 [KS, Proposition 2.5.1]直前の記述)。

問題 2.1. N を自然数の集合で、{0, · · · , n}, n ≥ −1 たちが開となる最も粗い位相を入れる。このと
き、N 上の前層 F は各 n に対するアーベル群 Fn :==

def
F ({0, · · · , n}) と n ≥ m に対する開集合の包含

{0, · · · ,m} ⊂ {0, · · · , n} により引き起こされる制限写像 Fn → Fm の族に唯一のアーベル群 F∞ :==
def
F (N)

を添加したものと同一視される。ToDo: enumerate

(i) 前層 F が層であるための必要十分条件は Γ(N, F ) ∼= limn Fn であることを示せ。
(ii) 各 j 6= 0, 1に対して Hj(N, F ) = 0であることを示せ。
(iii) H1(N, F ) ∼= (

∏
n Fn)/I であることを示せ。ただし I の定義は、fi,j : Fi → Fj を層 F の制限写像と

するとき、以下で定義される：

I :==
def

{
(xn)n∈N ∈

∏
n

Fn

∣∣∣∣∣∀n ∈ N, ∃yn ∈ Fn, xn = yn − fn+1,n(yn+1)

}
.

Proof. (i)は自明。(ii)を示す。Gn :==
def ∏

i≤n Fi と置く。射影 Gn → Gn−1 らにより定まる N上の層を Gと
置くと、構成からただちに Gが脆弱層であることがわかる。各 n ≥ iに対して制限写像 Fn → Fi の族が単射
Fn →

∏
i≤n Fi = Gn を引き起こす。これは制限写像 Fn → Fn−1 と射影 Gn → Gn−1 と可換し、よって層の

単射 F → Gを得る。
層 G/F の構造を決定する。層 F の制限写像を fi,j : Fi → Fj と置く。

ϕn((xi)i≤n) :==
def

(xi − fn,i(xn))i<n

で定まる射 ϕn : Gn → Hn :==
def ∏

i<n Fi は全射であり、核はちょうど Im(Fn → Gn)である。また、m ≤ n

に対して hn,m : Hn → Hm を
hn,m((xi)i<n) :==

def
(xi − fm,i(xm))i<m

と定めれば、各 i < m ≤ nに対して

(xi − fn,i(xn))− (fm,i(xm − fn,m(xn))) = xi − fm,i(xm)

となるので、図式
Gn

φn−−−−→ Hn

proj.

y yhn,m

Gm
φm−−−−→ Hm

は可換である。これらの Hn により定まる層 H は G/F に他ならないが、各 hn,m は全射であるから、H は
脆弱層である。以上より N上の層の完全列

0 −−−−→ F −−−−→ G −−−−→ H −−−−→ 0

で G,H が脆弱層となるものが構成できた。このことは Hj(N, F ) = 0, j ≥ 2を示している。以上で (ii)の証
明を完了する。
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(iii)を示す。(ii)の証明中に得られた層 H の大域切断を決定する。それは limnHn であるから、このアー
ベル群を計算する。limnHn は

∏
n∈N Hn の部分加群で、{

(xn :==
def

(xni )i<n)n∈N

∣∣∣xn ∈ Hn, ∀(m ≤ n), hn,m(xn) = xm
}

となるものと自然に同型である。従って各 i < m ≤ n に対して xmi = xni − hm,i(xnm) となる。従って、
このような元の族 xn ∈ Hn は xnn−1 ∈ Fn−1 によって xni = xn−1

i + hn−1,i(x
n
n−1) の形で一意的に決定

される。すなわち、射影 Hn → Fn−1 を並べて得られる射影
∏
n∈NHn →

∏
n∈N≥1

Fn−1 =
∏
n∈N Fn を

limnHn ⊂
∏
n∈NHn へ制限すると同型射となる。従って Γ(N,H) ∼=

∏
n∈N Fn となる。以上より、アーベル

群の完全列
0 −−−−→ H0(N, F ) −−−−→

∏
n∈N Fn

φ−−−−→
∏
n∈N Fn

−−−−→ H1(N, F ) −−−−→ 0

を得る。問われていることは、ϕ の像を決定することである。各 n について、ϕn : Gn → Hn の像の
Fn−1 の成分を見ればそれは決定できる。(xn)n∈N ∈ Γ(N, G) ∼=

∏
n∈N Fn を任意にとると、ϕn((xi)i≤n) =

(xi − fn,i(xn))i<n であるから、Fn−1 の成分は xn−1 − fn,n−1(xn)である。従って、

ϕ((xn)n∈N) = (xn − fn+1,n(xn+1))n∈N

となる。従って Im(ϕ) = I がわかる。よって H1(N, F ) ∼= (
∏
n∈N Fn)/I が示された。以上で解答を完了す

る。

問題 2.2. X を位相空間、A,B ⊂ X を閉集合とし、X = A ∪B であるとする。F ∈ Ob(D+(X))に対して、
自然に (RΓB(F ))A ∼= RΓB(FA)となることを示せ。

Proof. 函手 (−)X\A は完全なので、自然に RΓX\B(−)X\A ∼= R(ΓX\B(−)X\A) が成り立つ。(X \ A) ∩
(X \ B) = ∅ なので、ΓX\B(−)X\A = 0 が成り立ち、とくに RΓX\B(−)X\A = 0 が成り立つ。F を X 上
の層の上に有界な複体とする。完全三角 RΓB(F ) → F → RΓX\B(F )

+1−−→ に (−)X\A を施すことにより、
RΓB(F )X\A

∼−→ FX\A が従う。本文 [KS, Proposition 2.4.10]の直前の記述にあるとおり、脆弱層のなす X

の部分圏は ΓX\B(−)-injective である。また本文 [KS, Proposition 2.4.6 (i)]より、脆弱層に対して (−)|X\B

を施したものも脆弱層である。よって iB : X \ B → X を包含射とすると、RΓX\B ∼= RiB,∗ ◦ i−1
B が成り立

つ。i−1
B ((−)X\A) = 0であるから、任意の層に対して函手 (−)X\A を施したものは iB,∗ に対して acyclicで

あり、よって自然に RΓX\B((−)X\A) ∼= R(ΓX\B((−)X\A)) が成り立つ。(X \ A) ∩ (X \ B) = ∅なので、
ΓX\B((−)X\A) = 0が成り立ち、とくにRΓX\B((−)X\A) = 0が成り立つ。三角形RΓB(FX\A)→ FX\A →
RΓX\B(FX\A)

+1−−→ が完全であることから、RΓB(FX\A)
∼−→ FX\A は同型である。また、二つの図式

RΓB(FX\A)
∼−−−−→ FX\A RΓB(F )X\A

∼−−−−→ FX\Ay y y y
RΓB(F ) −−−−→ F RΓB(F ) −−−−→ F

が可換であることから、
RΓB(FX\A)

∼−−−−→ RΓB(F )X\Ay y
RΓB(F ) RΓB(F )
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も可換である (二つの同型射を逆に辿って得られる二つの射 FX\A → RΓB(F )の差が 0射である)。従って完
全三角の間の同型射

RΓB(FX\A) −−−−→ RΓB(F ) −−−−→ RΓB(FA)
+1−−−−→

∼=
y ∥∥∥ y∼=

RΓB(F )X\A −−−−→ RΓB(F ) −−−−→ RΓB(F )A
+1−−−−→

を得る。以上で問題 2.2の証明を完了する。

問題 2.3. (i) U ⊂ X を開部分集合、x ∈ Ū\U として、層 ZU について考えることによってHom(F,G)x ∼=
Hom(Fx, Gx)は一般には正しくないことを示せ。

(ii) 次を満たす X 上の層 F と閉部分集合 Z ⊂ X と開部分集合 U の例を与えよ：Z ∩ U = ∅ であり、
RΓZ(FU ) 6= 0である。ΓZ(FU )であることを確認し、このことから、一般に合成函手の導来函手が導
来函手の合成とは異なることを帰結せよ。

Proof. (i)を示す。F = ZU とおき、Gは任意の層とする。x 6∈ U なので Fx = 0であり、従って、このとき、
Hom(Fx, Gx) = 0が成り立つ。また、各開集合 V ⊂ X に対して自然に

Hom(F,G)(V ) = Hom(ZU , G)(V ) = Hom(ZU |V , G|V ) = Hom(ZU∩V , G|V ) ∼= G(U ∩ V )

が成り立つので、Hom(F,G) ∼= ΓU (G)が成り立つ。従って、たとえば X = R, U = R \{0}, x = 0, G = Z
とすると、

Hom(ZU ,Z)x ∼= ΓU (G)x ∼= Z⊕Z 6= 0 = Hom(Fx, Gx)

である。以上で (i)の証明を完了する。
(ii)を示す。まず一般に Z ∩U = ∅であれば、FU の各切断は U の中に台を持つので ΓZ(FU ) = 0が成り立
つ。X = R≥0, U = R>0 ⊂ X,Z = {0} として F = ZX を定数層とする。このとき、F は定数層なので、各開
集合 V ⊂ X に対して s ∈ F (V )で Z の外で 0となるものは 0しかない (0 ∈ V であり、s0 = n 6= 0であれば、
0を含む V の連結成分の上で s = nである)。従って ΓZ(F ) = 0である。完全列 0 → FU → F → FZ → 0

に函手 ΓZ(−)を施すことにより、同型射 Zx ∼= ΓZ(FZ)
∼−→ H1

Z(FU )を得る。従ってこれが所望の例を与え
る。以上で (ii)の証明を完了し、問題 2.3の解答を完了する。

問題 2.4. 可縮な位相空間の上の局所定数層は定数層であることを示せ。

Proof. X を可縮な位相空間、F1 を X 上の局所定数層とする。C(X)を X の錐とし、i : X → C(X)を包含
射とする。X は可縮なので、ある r : C(X)→ X が存在して、r ◦ i = idX となる。従って i−1(r−1F1) ∼= F1

となる。よって r−1F1 が定数層であることを証明すれば良い。v ∈ C(X)を錐の頂点とする。p : F → C(X)

を層 r−1F1 のエタール空間 (cf. [Ha, Exercise 1.13]) とする。r−1F1 は局所定数層であるから、p は C(X)

の被覆空間である。r−1F1 が定数層であることを証明するためには、pが自明な被覆空間であることを証明す
れば良い。
F の連結成分のなす集合を Fc とおき、Fc には離散位相を入れる。また、Fv :==def p−1(v)とおく。このとき、

Fv の各点に対して、その点の属する連結成分を対応させることにより、写像 Fv → Fc を得る。各元 [Y ] ∈ Fc
に対して Y ⊂ F で対応する連結成分を表すとする。元 [Y ] ∈ Fc と点 y ∈ Y に対して、p(y)と v を結ぶ直線
は F 内の pathへと一意的にリフトする、すなわち、C(X)内の直線 l : [0, 1]→ C(X), l(0) = v, l(1) = p(y)
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に対して、ある path l′ : [0, 1] → F が一意的に存在して、p ◦ l′ = l となる。l′ の像は連結であり、y ∈ Y で
あり、Y は連結成分であるから、l′ は Y を一意的に経由する (これは [0, 1]上の被覆空間が自明なものに限る
ことから従う)。従って、このことから、写像 Fv → Fc は全単射であり、さらに各元 [Y ] ∈ Fc に対して合成
射 Y ⊂ F → C(X)は全単射であることが従う。
F → Fc を各点に対してその点の属する連結成分を対応させる (連続) 写像とすると、この (連続) 写像と

p : F → C(X)によって、C(X)上の連続写像 F → Fc ×C(X)を得る。Fv → Fc が全単射であることと、各
元 [Y ] ∈ Fc に対して合成射 Y ⊂ F → C(X)は全単射であることから、F → Fc × C(X)は C(X)上の被覆
空間の間の全単射であることが従う。とくに同相写像である。よって p : F → C(X)は自明な被覆空間であ
る。以上で問題 2.4の解答を完了する。

問題 2.5. X をパラコンパクトハウスドルフ空間とする。X 上の層 F が soft であるとは、任意の閉集合
Z ⊂ X に対して F (X) → F (Z) が全射であることを言う。F が soft であるとき、任意の i > 0 に対して
Hi(X,F ) = 0であることを示せ。

Proof. 問題 2.5を示すには、softな層たちからなる Ab(X)の充満部分圏が Γ(X,−)-injective であることを
示すこと、従って、次の事柄を示すことが十分である (cf. 本文 [KS, Definition 1.8.2]の直後の記述)：

(i) 脆弱層は softである (従って、とくに、任意の層 F に対して、F を部分層として含む softな層 Gが存
在する)。

(ii) 0→ F → G→ H → 0が層の完全列であるとき、F,Gが softであるとすると、H も softである。
(iii) 0→ F → G→ H → 0が層の完全列であるとき、F が softであれば、次の列も完全である：

0→ Γ(X,F )→ Γ(X,G)→ Γ(X,H)→ 0.

(i)は本文 [KS, Proposition 2.5.1 (iii)] よりただちに従う。(ii)は、閉部分集合の上への制限をする函手が完
全であること、softな層の閉部分集合への制限が softであること、(iii)、へびの補題、より従う。残っている
のは (iii)を示すことである。
(iii) を示す。u ∈ Γ(X,H) を任意にとる。もとの層の列が完全であることから、u は局所的には G へと
持ち上がる、すなわち、ある X の開被覆 X =

⋃
i∈I Ui と各 Ui 上の G の切断 t1i ∈ Γ(Ui, G) が存在して、

ti 7→ u|Ui となる。Ui を局所有限開被覆による細分でおきかえて、ti を制限することを考えれば、(iii) を示
すためには、Ui は局所有限であると仮定しても一般性を失わない。本文 [KS, Proposition 2.5.1]の主張が終
わるところからその証明が始まる前までの記述にあるとおり、Ui の開被覆による細分 (Vi)i∈I であって、任
意の i ∈ I に対して V̄i ⊂ Ui となるものが存在する。このとき、(V̄i)i∈I も局所有限である。i ∈ I に対して
Zi :==

def
V̄i とおく。すると、(Zi)i∈I が局所有限であることから、任意の J ⊂ I に対して

ZJ :==
def
⋃
j∈J

Zj =
⋃
j∈J

Vj ⊂ X

である (とくに ZJ は閉である)。

S :==
def {(J, t)|J ⊂ I, t ∈ Γ(ZJ , G), s.t., t|ZJ

7→ u|ZJ
}

と定義して、
(J1, t1) ≤ (J2, t2) :

def⇐⇒ J1 ⊂ J2かつ t1 = t2|ZJ1
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と定義する。T ⊂ S を全順序部分集合とする。JT :==
def ⋃

(J,tJ )∈T J とおく。このとき、ZJT =
⋃

(J,tJ )∈T ZJ

であるから、各 (J, tJ) ∈ T に対して層の全射 GZJT
→ GZJ

を得る。この全射は ZJ 上の各点の stalk の
間で同型射であるから、自然な射 GZJT

∼−→ limJ∈T GZJ
は同型射となる。大域切断をとることにより、同

型射 Γ(ZJT , G)
∼−→ limJ∈T Γ(ZJ , G) を得る。従って、各切断 tJ ∈ Γ(ZJ , G) は切断 t ∈ Γ(ZJT , G) を定

め、T は上界 (JT , t) を持つ。よって、Zorn の補題により、S には極大元 (J, t) が存在する。J = I であ
ることを証明できれば、ZJ = X であるから、(iii) の証明が完了する。よって、(iii) が成り立つためには、
J = I であることが十分である。元 i ∈ I \ J が存在することを仮定する。ti|Zi∩ZJ

− t|Zi∩ZJ
7→ 0 である

から、ti|Zi∩ZJ
− t|Zi∩ZJ

∈ F (Zi ∩ ZJ) である。F は soft であり、Zi ∩ ZJ ⊂ X は閉であるから、ある
s ∈ Γ(X,F )が存在して、s|Zi∩ZJ

= ti|Zi∩ZJ
− t|Zi∩ZJ

となる。t′i :==def ti− s|Ui
と定義すると、sの定義より、

t′i|Zi∩ZJ
= t|Zi∩ZJ

が成り立つ。従って、本文 [KS, Proposition 2.3.6 (vi)]より、J ′ :==
def
J ∪{i}とおけば、あ

る t′ ∈ G(ZJ ′)が存在して、t′|Zi
= t′i かつ t′|ZJ

= tとなる。よって、再び本文 [KS, Proposition 2.3.6 (vi)]

より、t′ 7→ u|ZJ′ である。これは (J, t) < (J ′, t′)を意味し、(J, t)の極大性に反する。以上で I = J が従い、
(iii)の証明を、従って、問題 2.5の解答を、完了する。

問題 2.6. X を局所コンパクトハウスドルフ空間、F を X 上の層とする。

(i) F が c-softであるための必要十分条件は任意の i > 0と任意の開集合 U に対して Hi
c(U,F ) = 0とな

ることである。ただしここで Hi
c(U,F ) :==

def
Hi
c(U,F |U )である。

(ii) X が可算個のコンパクト部分集合の和集合として表すことができるとき、F が c-softであれば softで
あることを示せ。

(iii) c-softであるという性質は局所的な性質であることを示せ。

Proof. (i) を示す。必要性を示す。F を c-soft であるとする。本文 [KS, Proposition 2.5.7 (i)] より F |U は
c-soft である。すると U 上の c-soft な層たちは Γc(U,−)-injective な圏であるので、とくに c-soft な層は
Γc(U,−)-acyclicである。よって、とくに、任意の i > 0に対して Hi

c(U,F |U ) = 0である。以上で必要性の
証明を完了する。
十分性を示す。任意の i > 0と任意の開集合 U ⊂ X に対して Hi

c(U,F ) = 0と仮定する。K ⊂ X をコン
パクト部分集合とすれば、X はハウスドルフなので、K ⊂ X は閉である。従って U :==

def
X \K は開である。

よってH1
c (U,F ) = 0である。すると、本文 [KS, Remark 2.6.10]の最後の完全系列より、射 F (X)→ F (K)

は全射である。以上で (i)の証明を完了する。
(ii) を示す。F を X 上の c-soft な層であり、Z ⊂ X を閉集合とする。Kn ⊂ X, (n ∈ N) をコンパクト
部分集合の族で、Kn ⊂ Int(Kn+1) と X =

⋃
n∈NKn を満たすものとする。Zn :==

def
Z ∩ Kn とおくと、Zn

はコンパクトである。Un :==
def
Kn \ Zn とおくと、Un ⊂ X は局所閉集合である。F は c-soft なので、本文

[KS, Proposition 2.5.7 (i)] より F |Kn は Kn 上の c-soft な層であり、F |Un は Un 上の c-soft な層である。
Kn, Zn+1 ⊂ Kn+1 はいずれもコンパクト部分集合であり、F |Kn+1

は c-softなので、可換図式

F (Kn+1) −−−−→ F (Zn+1)y y
F (Kn) −−−−→ F (Zn)

において、いずれの射も全射である。Kn, Zn はコンパクトであるから、F (Kn) = Γc(Kn, F ), F (Zn) =
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Γc(Zn, F )であることに注意する。Kn 上の層の完全列

0 −−−−→ (F |Kn)Un −−−−→ F |Kn −−−−→ (F |Kn)Zn −−−−→ 0

に函手 Γc(Kn,−)を施すことにより、

0 −−−−→ Γc(Un, F ) −−−−→ F (Kn) −−−−→ F (Zn) −−−−→ 0

は完全であることが従うので、以上より、完全列の間の射

0 −−−−→ Γc(Un+1, F ) −−−−→ F (Kn+1) −−−−→ F (Zn+1) −−−−→ 0y y y
0 −−−−→ Γc(Un, F ) −−−−→ F (Kn) −−−−→ F (Zn) −−−−→ 0

を得る。ただしここで、真ん中と右側の縦向きの射は全射である。極限 limn∈N をとると、完全列

0 −−−−→ limn∈N Γc(Un, F ) −−−−→ limn∈N F (Kn) −−−−→ limn∈N F (Zn)

を得る。F (X)
∼−→ limn∈N F (Kn), F (Z)

∼−→ limn∈N F (Zn)であるから、この完全列は完全列

0 −−−−→ limn∈N Γc(Un, F ) −−−−→ F (X) −−−−→ F (Z)

と自然に同型である。従って、F (X)→ F (Z)が全射であるためには、(Γc(Un, F ))n∈N が Mittag-Leffler 条
件を満たすことが十分である。Un ⊂ Un+1 は閉なので、Un+1 上の層の列

0 −−−−→ (F |Un+1)Un+1\Un
−−−−→ F |Un+1 −−−−→ (F |Un+1)Un −−−−→ 0

は (本文 [KS, Proposition 2.6.6 (v)] より) 完全である。F |Un+1 は c-soft であるので、この完全列に函
手 Γc(Un+1,−) を施すことにより、Γc(Un+1, F ) → Γc(Un, F ) は全射であることが従う。よって、逆系
(Γc(Un, F ))n∈N は Mittag-Leffler 条件を満たす。従って、射 F (X)→ F (Z)は全射であり、以上で (ii)の証
明を完了する。
(iii) を示す。X の開被覆 X =

⋃
i∈I Ui が存在して、各 i に対して F |Ui

が Ui 上の c-soft な層であると仮
定する。j : Ui → X を包含射とする。本文 [KS, Proposition 2.5.4 (ii)] より、FUi = j!(F |Ui) であるから、
F |Ui

が c-softであることから、FUi
も c-softであることが従う。本文 [KS, Proposition 2.3.6 (vii)]の完全列

0 −−−−→ FUi1
∩Ui2

−−−−→ FUi1
⊕ FUi2

−−−−→ FUi1
∪Ui2

−−−−→ 0

において、左側と真ん中が c-soft なので、本文 [KS, Corollary 2.5.9] より FUi1
∪Ui2

も c-soft である。従っ
て、有限部分集合 I1 ⊂ I に対して UI1 :==

def ⋃
i∈I1 Ui とおけば、FUI1

は c-softである。任意にコンパクト集合
K ⊂ X をとれば、ある有限部分集合 I1 ⊂ I が存在してK ⊂ UI1 となる。F |UI1

= (FUI1
)|UI1

は c-softであ
るから、Γc(UI1 , F |UI1

) = Γc(X,FUI1
) → Γc(K,F ) は全射である。また、FUI1

は F の部分層であるから、
従って、Γc(X,F )→ Γc(K,F )も全射である。さらに Γc(X,F ) ⊂ F (X)であり、Γc(K,F ) = F (K)である
ので、よって F (X)→ F (K)は全射である。以上で (iii)の証明を完了し、問題 2.6の解答を完了する。

問題 2.7. X を局所コンパクトハウスドルフ空間として、Rを X 上の c-softな環の層とする。このとき、任
意の R-加群は c-softであることを示せ。
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注意. 本文ではX に関する仮定が何も書かれていないが、c-softな層に関する話は局所コンパクトハウスドル
フ空間上で展開することが、本文では念頭に置かれているように思う。(もちろん、X が局所コンパクトでな
くてもこの問題を解くことが可能かもしれないが...)

Proof. M を R-加群とする。X は局所コンパクト空間であるから、閉包がコンパクトであるような開集合た
ちの和集合である。従って、item (iii)より、M が c-softであることを示すためには、X をコンパクトハウス
ドルフ空間であると仮定しても一般性を失わない。このとき、c-softであるという性質と softであるという性
質は同等であることに注意しておく。とくに、Rは softである。
コンパクト部分集合K ⊂ X と切断mK ∈ Γ(K,M)を任意にとる。本文 [KS, Proposition 2.5.1 (ii)]より、
ある開集合 K ⊂ U ⊂ X とある切断 mU ∈ Γ(U,M)が存在して、mK = mU |K となる。K ⊂ V ⊂ V̄ ⊂ U

となる開集合 V を一つとる (X は局所コンパクトであり、K はコンパクトであるから、このような V が存在
する)。Rは softであり、K ∪ (X \ V ) ⊂ X は閉であるため、ある f ∈ Γ(X,R)が存在して

f |K∪(X\V ) = (1|K , 0X\V ) ∈ Γ(K,R)× Γ(X \ V,R) ∼= Γ(K ∪ (X \ V ), R)

となる。W :==
def
X \ V̄ とおけば、V̄ ⊂ U なので W ∪ U = X である。さらに U ∩W ⊂ X \ V であるか

ら、f |U∩W = 0であり、とくに f |U∩W ×mU |U∩W = 0である。従って、M は層であるから、W 上での切
断 0 ∈ Γ(W,M)を考えることにより、ある m ∈ Γ(X,M)が存在して f |U ×mU = m|U ,m|W = 0となる。
f |K = 1なので、よってm|K = f |K ×mU |K = mU |K = mK が従う。以上より Γ(X,M)→ Γ(K,M)は全
射であり、問題 2.7の証明を完了する。

問題 2.8. X を局所コンパクトハウスドルフ空間として、可算個のコンパクト部分集合の和集合であるとする。
X 上の層 F がしなやか (supple) であるとは、任意の開集合 U ⊂ X と U の二つの閉部分集合 Z1, Z2 ⊂ U に
対して ΓZ1

(U,F )⊕ ΓZ2
(U,F )→ ΓZ1∪Z2

(U,F ) が全射であることを言う。

(i) 脆弱層はしなやかであることを示せ。
(ii) 層 F がしなやかであれば、任意の閉部分集合 Z ⊂ X に対して層 ΓZ(F )は c-soft であることを示せ。
(iii) F を X 上の層とする。X のある開被覆 X =

⋃
i∈I Ui が存在して、任意の iで F |Ui

が Ui 上のしなや
かな層であるとするとき、F もしなやかであることを示せ。

Proof. (i) を示す。F を X 上の脆弱層とする。開集合 U と閉集合 Z1, Z2 ⊂ U を任意にとる。Vi :==
def

U \ Zi, (i = 1, 2)とすると、V1, V2 ⊂ X は開である。F は脆弱であるから、可換図式
0 −−−−→ ΓZ1∩Z2

(U,F ) −−−−→ ΓZ1
(U,F )⊕ ΓZ2

(U,F ) −−−−→ ΓZ1∪Z2
(U,F )y y y

0 −−−−→ F (U) −−−−→ F (U)⊕ F (U) −−−−→ F (U) −−−−→ 0y y y
0 −−−−→ F (V1 ∪ V2) −−−−→ F (V1)⊕ F (V2) −−−−→ F (V1 ∩ V2)

において真ん中から下への縦向きの射はいずれも全射であり、さらに一番下の行は層であることの定義より完
全である。蛇の補題を用いることで、ΓZ1

(U,F )⊕ ΓZ2
(U,F )→ ΓZ1∪Z2

(U,F ) が全射であることが従う。以
上で (i)の証明を完了する。
(ii)を示す。F を X 上のしなやかな層とする。まず、任意の閉部分集合 Z に対して ΓZ(F )が X 上のしな
やかな層であることを示す。U ⊂ X を開集合、Z ′ ⊂ U を U の閉部分集合とする。F の U 上の section で
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あって Z に台を持ち、さらに Z ′ にも台を持つものは Z ∩ Z ′ に台を持つので、

ΓZ′(U,ΓZ(F )) = ΓZ′∩Z(U,F )

が成り立つ。二つの閉部分集合 Z1, Z2 ⊂ U に対して、Z ′
1 :==

def
Z1 ∩ Z,Z ′

2 :==
def
Z2 ∩ Z とおけば、F がしなやか

であることから、
ΓZ′

1
(U,F )⊕ ΓZ′

2
(U,F )→ ΓZ′

1∪Z′
2
(U,F )

は全射である。Z ′
1 ∪ Z ′

2 = (Z1 ∪ Z2) ∩ Z であるので、従って

ΓZ1
(U,ΓZ(F ))⊕ ΓZ2

(U,ΓZ(F ))→ ΓZ1∪Z2
(U,ΓZ(F ))

も全射である。これは ΓZ(F )がしなやかであることを意味する。以上より、(ii) を示すためには、任意のし
なやかな層が c-softであることを示すことが十分である。
F を X 上のしなやかな層として、K ⊂ X をコンパクト部分集合とする。t ∈ F (K) を一つとる。本文

[KS, Proposition 2.5.1 (ii)] より、ある開集合 K ⊂ U ⊂ X と tU ∈ F (U) が存在して、tU |K = t が成り立
つ。K ⊂ V, V̄ ⊂ U となる開集合 V ⊂ X を一つとる。Z :==

def
Supp(tU ) \ V とおくと、tU ∈ ΓZ∪V̄ (U,F )で

ある。F はしなやかであり、V̄ , Z ⊂ U は閉集合であるから、ある u ∈ ΓZ(U,F ), v ∈ ΓV̄ (U,F )が存在して
tU = u+ v が成り立つ。Z ∩K ⊂ Z ∩ V = ∅であるから、u|K = 0である。従って t = tU |K = v|K が成り
立つ。V̄ ⊂ U であるから、ΓV̄ (X,F )

∼−→ ΓV̄ (U,F ) は同型射である。従って v ∈ ΓV̄ (X,F ) ⊂ F (X)とみな
すことができる。よって v|K = tとなる大域切断 v ∈ F (X)が存在することが従い、F は c-softであること
が従う。以上で (ii)の証明を完了する。
(iii)を示す。まず以下の主張を証明する：ToDo: enumerate

(i) X を位相空間、Z ⊂ X を閉部分集合、U ⊂ X を開集合、F をX 上の層として、F |U がしなやかであ
ると仮定する。開集合 V と閉集合 C が V ⊂ C ⊂ U を満たしているとする。このとき、任意の切断
t ∈ ΓZ(X,F )に対し、ある u ∈ ΓZ∩C(X,F )と v ∈ ΓZ\V (X,F )が存在して t = u+ v が成り立つ。

t|U ∈ ΓZ∩U (U,F ) について考える。F |U はしなやかであり、Z ∩ U = (Z ∩ U ∩ C) ∪ ((Z ∩ U) \ V ) =

(Z∩C)∪((Z∩U)\V )であるから、ある u1 ∈ ΓZ∩C(U,F )と v1 ∈ Γ(Z∩U)\V (U,F )が存在して t|U = u1+v1

が成り立つ。Z ∩ C は X の閉部分集合であるような U の部分集合であり、u1|U\(Z∩C) = 0 であるから、
X \ (Z ∩C)上の関数 0と u1が貼り合い、u|U = u1, Supp(u) ⊂ Z ∩C となる大域切断 u ∈ ΓZ∩C(X,F )が一
意的に定義される。v :==

def
t− uとおけば、u1 + v1 = t|U = u|U + v|U = u1 + v|U であるから v1 = v|U が成り

立ち、従って Supp(v|U ) ⊂ (Z∩U)\V である。一方、Supp(u) ⊂ Z∩C であるから、v|X\(Z∩C) = t|X\(Z∩C)

であり、従って Supp(v|X\(Z∩C)) ⊂ Z ∩ (X \ (Z ∩ C)) = Z \ C が成り立つ。以上より

Supp(v) ⊂ (Z \ C) ∪ ((Z ∩ U) \ V ) = Z \ V

が成り立ち、v ∈ ΓZ\V (X,F )が成り立つ。以上で (i)の証明を完了する。
次に以下の主張を証明する：ToDo: enumerate

(i) X を位相空間、F を X 上の層として、ti ∈ Γ(X,F ), (i ∈ I) を大域切断の族とする。閉集合族
(Supp(ti))i∈I が局所有限であるとき、ある大域切断 t ∈ Γ(X,F ) が存在して、任意の x ∈ X で
tx =

∑
i∈I ti,x が成り立つ (各 x ∈ X に対して stalk ti,x は有限個の i ∈ I を除き 0 なので、右辺が

well-defined であることに注意)。
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各 x ∈ X に対して U(x) ∩ Supp(ti) 6= ∅ となる i ∈ I が有限個となる開近傍 x ∈ U(x) を一
つずつ選び、I(x) :==

def {i ∈ I|U(x) ∩ Supp(ti) 6= ∅} 定める。定義より I(x) は有限集合である。
t(x) :==

def
(
∑
i∈I(x) ti)|U(x) と定義する (I(x) が有限集合であることに注意)。このとき、x, y ∈ X に対

して t(x)|U(x)∩U(y) = t(y)|U(x)∩U(y) が成り立つ (各 stalkごとに、U(x) ∩ U(y)上で 0でない ti たちの和と
等しい)。F が層であることから、ある t ∈ Γ(X,F )が存在して任意の x ∈ X に対して t|U(x) = t(x)が成り
立つ。t(x)の定義より、この大域切断 tが所望の大域切断である。以上で (i)の証明を完了する。
本題に入る。(Ui)i∈I を X の開被覆として、F を X 上の層とする。F |Ui

が Ui 上のしなやかな層であると
する。各 i ∈ I に対して、F |Ui∩U は Ui ∩ U 上のしなやかな層であるから、(iii)を示すためには、任意の閉集
合 Z1, Z2 ⊂ X に対して ΓZ1

(X,F ) ⊕ ΓZ2
(X,F ) → ΓZ1∪Z2

(X,F ) が全射であることを証明することが十分
である。X は局所コンパクトであり可算個のコンパクト部分集合の和であるから、パラコンパクトである (cf.

本文 [KS, Proposition 2.5.1]の段落)。従って、局所有限な開被覆による (Ui)i∈I の細分をとることによって、
(iii)を示すためには、(Ui)i∈I が局所有限であると仮定しても一般性を失わない。開集合 Vi ⊂ Ui を V̄i ⊂ Ui

となるようにとると、閉被覆 (V̄i)i∈I も局所有限である。I に整列順序を入れて順序数とみなしたものを αと
おき (整列可能定理)、各 β < αに対して対応するものを Uβ , Vβ などと表す。各 β < αに対して

U<β :==
def
⋃
γ<β

Uγ , U≤β :==
def
U<β+1, V<β :==

def
⋃
γ<β

Vγ , V≤β :==
def
V<β+1,

とおく (ただし U<0 = V<0 = ∅と定義する)。このとき、任意の β < αに対して V̄<β =
⋃
γ<β V̄γ が成り立

ち、また V<α = U<α = X が成り立つ。
t ∈ ΓZ1∪Z2

(X,F )を任意にとる。各 β ≤ αに対して、大域切断 ti,<β ∈ ΓZi∩V̄<β
(X,F ), (i = 1, 2)であって

t|V<β
= (t1,<β + t2,<β)|V<β

(⋆)

が成り立つものが存在することを示す。そのためには、超限帰納法により、β ≤ α を任意にとり、任意の
γ < β に対してに対して等式 (⋆) を満たす Zi ∩ V̄<γ に台を持つ大域切断 ti,<γ が存在すると仮定して、
β に対して等式 (⋆) を満たす Zi ∩ V̄<γ に台を持つ大域切断 ti,<γ が存在することを示すことが十分であ
る。β = 0 に対しては t1,<0 = t2,<0 = 0 と定義すれば (⋆) が成り立つ。(そうでなくても、V<0 = ∅ な
のでなんでも良い)。β ≤ α を任意にとる。任意の γ < β に対してに対して等式 (⋆) を満たす Zi ∩ V̄<γ
に台を持つ大域切断 ti,<γ が存在すると仮定する。uγ = t − (t1,<γ + t2,<γ) とおく。uγ |V<γ

= 0 であ
り、t は Z1 ∪ Z2 に台を持ち、ti,<γ は Zi ∩ V̄<γ に台を持つので、uγ は (Z1 ∪ Z2) \ V<γ に台を持つ。β
が極限順序数である場合は、各 ti,<γ+1 − ti,<γ は V̄γ+1 \ V<γ に台を持ち、閉集合族 (V̄γ+1 \ V<γ)γ<β は
局所有限であるから、(i) を用いて ti,<β :==

def ∑
γ<β(ti,<γ+1 − ti,<γ) と定義することで所望の大域切断を

得る。β が β− の後続順序数である場合に所望の大域切断 ti,<β の存在を示すことが残っている。(i) を
U = Uβ− , Z = (Z1 ∪ Z2) \ V<β− , C = V̄β− , V = Vβ− に対して適用することにより、(Z1 ∪ Z2) \ V<β に台
を持つ大域切断 u′β と (Z1 ∪ Z2) ∩ V̄β− に台を持つ大域切断 tβ− が存在して、uβ− = u′β + tβ− が成り立つ。
F |Uβ− はしなやかであるから、i = 1, 2 に対して Zi ∩ V̄β− に台を持つ Uβ− 上の大域切断 ti,β− が存在して
tβ |Uβ− = (t1,β− + t2,β−)|Uβ− が成り立つ。Zi ∩ V̄β− , (i = 1, 2)は X の閉部分集合であるから、ti,β− は Uβ−

の外で 0とすることで大域切断に延長できる。よって、i = 1, 2に対して Zi ∩ V̄β− に台を持つ大域切断 ti,β−

が存在して tβ− = t1,β− + t2,β− が成り立つ。ti,<β :==
def
ti,<β− + ti,β− , (i = 1, 2)と定義すると、大域切断 ti,<β

は Zi ∩ V̄<β に台を持ち、さらに

t|V<β
= (t1,<β− + t2,<β− + uβ−)|V<β
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= (t1,<β− + t2,<β− + u′β + tβ−)|V<β

= (t1,<β− + t2,<β− + u′β + t1,β− + t2,β−)|V<β

= (t1,<β + t2,<β + u′β)|V<β

= (t1,<β + t2,<β)|V<β
+ u′β |V<β

= (t1,<β + t2,<β)|V<β

が成り立つ。以上より、各 β ≤ αに対して、Zi ∩ V̄<β に台を持つ大域切断 ti,<β であって t|V<β
= (t1,<β +

t2,<β)|V<β
を満たすものが存在することが示された。β = αとすることで (iii)の証明が完了する。以上で問

題 2.8の解答を完了する。

感想. (iii)を上手に示す方法を知っている (もしくは、上手に証明できた) 人は教えてください (上の証明はゴ
リ押し感が強いので)。本文で参照されている Bengal-Schapira はフランス語だったしどこにそれっぽい主張
が書いてあるのかあんまりよくわからなかったのであんまり参考にしてません。(iii)より (ii)の方が難しくて
苦労しました。慣れてなかっただけかもしれません。

注意. X がパラコンパクトであり F が X 上のしなやかな層であるとすると、(ii)と同様の証明により、任意
の閉部分集合 Z に対して ΓZ(F )は softであることを示すことができる。

注意. X をハウスドルフとして、F を X 上のしなやかな層であるとする。K ⊂ X を閉部分集合として、K
がコンパクトであるか、またはX がパラコンパクトであるとする。このとき、F |K はK 上のしなやかな層で
ある。これを示す。明らかに F の開部分集合への制限はその開部分集合上しなやかな層となる。K の開部分
集合は X の開集合W ⊂ X により K ∩W と表すことができる。Z1, Z2 ⊂ K ∩W を閉集合とする。このと
き Z1, Z2 はW の閉集合である。K ∩W ⊂ W ′ ⊂ W となる開集合W ′ ⊂ X の族を包含関係の逆順に関して
有向集合とみなしてそれを I とし、i ∈ I に対して対応する開集合をWi と表す。各 i ∈ I に対して F |Wi

は
Wi 上のしなやかな層であるから、

ΓZ1(Wi, F |Wi)⊕ ΓZ2(Wi, F |Wi)→ ΓZ1∪Z2(Wi, F |Wi)

は全射である。i ∈ I に渡って余極限をとると、本文 [KS, Proposition 2.5.1]より、

ΓZ1
(K ∩W,F |K∩W )⊕ ΓZ2

(K ∩W,F |K∩W )→ ΓZ1∪Z2
(K ∩W,F |K∩W )

が全射であることが従う。これは F |K がしなやかであることを意味する。

問題 2.9. X を位相空間とする。

(i) F を X 上の層として、n ≥ 0を自然数とする。以下の条件が同値であることを示せ：
(a) 完全列 0 → F → F 0 → · · · → Fn → 0で各 j = 0, · · · , nに対して F j が脆弱であるものが存在
する。

(b) 0 → F → F 0 → · · · → Fn → 0が完全であり、各 j < nに対して F j が脆弱であれば、Fn も脆
弱である。

(c) 任意の閉部分集合 Z ⊂ X と任意の k > nに対して Hk
Z(X,F ) = 0が成り立つ。

(d) 任意の局所閉部分集合 Z ⊂ X と任意の k > nに対して Hk
Z(X,F ) = 0が成り立つ。

(e) 任意の閉部分集合 Z ⊂ X と任意の k > nに対して Hk
Z(F ) = 0が成り立つ。

(f) 任意の局所閉部分集合 Z ⊂ X と任意の k > nに対して Hk
Z(F ) = 0が成り立つ。
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これらの条件を満たす最小の n ≥ 0を F の脆弱次元 (flabby dimension) と言い、X 上のすべての層
F の脆弱次元の supを X の脆弱次元と言う。

(ii) X を局所コンパクトハウスドルフであるとする。X 上の層 F の c-soft dimension を同様に定義し
て、この場合にも (i)の条件 (a)から (d)に対応するものが同値であることを確認せよ。

(iii) X を局所コンパクトハウスドルフであるとする。このとき、以下の不等式を証明せよ：

F の c-soft dimension ≤ F の脆弱次元 ≤ F の c-soft dimension + 1.

Proof. (i)を示す。帰納法で証明する。n = 0とする。条件 (a)と (b)はどちらも「F は脆弱層である」と読
むことができるので明らかに同値である。(d) ⇒ (c) と (f) ⇒ (e) が成り立つことは明らかである。また脆弱
層は函手 ΓZ(X,−) や ΓZ(−) に対して acyclic である (cf. 本文 [KS, Proposition 2.4.10] の直前の記述) の
で、(a) ⇒ (d), (e) が成り立つ。U ⊂ X を任意の開集合として、Z :==

def
X \ U とおけば、

0→ H0
Z(X,F )→ F (X)→ F (U)→ H1

Z(X,F ),

0→ H0
Z(F )→ F → ΓU (F )→ H1

Z(F )

は完全であるから、上の列が完全であることから (c) ⇒ (a) が成り立ち、下の列が完全であることと本文
[KS, Proposition 2.4.10] の証明中で示されている主張 (2.4.1) より、(e) ⇒ (a) が成り立つ。以上で n = 0

の場合に条件 (a) から (f) が全て同値であることが示された。ある n で所望の同値性が示されていると仮定
して、n + 1 に対して所望の同値性を示す。(d) ⇒ (c) と (f) ⇒ (e) はいつでも成立する。また、n 番目ま
で入射分解をとることによって、(b) ⇒ (a) が成り立つ。F が n + 1 に対して (a) を満たすと仮定する。脆
弱層への単射 f : F → F0 を任意にとる。coker(f) は n に対して (a) を満たすので、帰納法の仮定より、
coker(f)は nに対して (b)を満たす。f の取り方は任意だったので、これは F が n+ 1に対して (b)を満た
すことを意味する。また、完全列 0 → F → F0 → coker(f) → 0 で局所コホモロジーをとると、F0 が脆弱
層であることから、任意の局所閉集合 Z ⊂ X と i ≥ 1に対して同型射 Hi

Z(X, coker(f))
∼−→ Hi+1

Z (X,F )と
Hi
Z(coker(f))

∼−→ Hi+1
Z (F )を得る。coker(f)は nに対して (a)を満たすので、帰納法の仮定より、coker(f)

は nに対して (d)と (f)を満たす。よって、F が n+ 1に対して (d)と (f)を満たすことが従う。F が n+ 1

に対して (c)または (e)を満たすと仮定する。脆弱層への単射 f : F → F0 を任意にとれば、先ほどと同様に
して、coker(f)が nに対して (c)または (e)を満たすことが従う。帰納法の仮定より、coker(f)が nに対し
て (a)を満たすことが従い、よって F が nに対して (a)を満たすことが従う。以上で (i)の証明を完了する。
(ii)を示す。X を局所コンパクトハウスドルフ空間とする。(i)の主張 (a)から (d)に対応するのは以下の
主張である (ほんまか??)：

(i) 完全列 0 → F → F 0 → · · · → Fn → 0 で各 j = 0, · · · , n に対して F j が c-soft であるものが存在
する。

(ii) 0→ F → F 0 → · · · → Fn → 0が完全であり、各 j < nに対して F j が c-soft であれば、Fn も c-soft

である。
(iii) 任意の開集合 U と任意の k > nに対して Hk

c (U,F |U ) = 0が成り立つ。
(iv) 任意の局所閉集合 U と任意の k > nに対して Hk

c (U,F |U ) = 0が成り立つ。

帰納法で証明する。まず n = 0の場合にこれらの主張が同値であることを示す。(i)と (ii)が同値であること
は明らかである。また、item (i) より、(i)と (iii)も同値である。(iv)から (iii)が従うことは明らかである。
さらに、c-soft な層の局所閉部分集合への制限はまた c-softであるから、item (i)より、(i)と (ii)と (iii)のい
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ずれかを仮定すれば (iv)が導かれる。以上で n = 0の場合の証明を完了する。ある nで所望の同値性が示さ
れていると仮定して、n + 1に対して所望の同値性を示す。(iv)から (iii)が従うことは明らかである。また、
n番目までの入射分解をとれば、入射的な層は脆弱層であり、脆弱層は c-softであるから、これは n番目まで
の c-soft 分解を与えるので、その余核を考えることによって、(ii)から (i)が導かれる。F が n+ 1に対して
(i)を満たすとする。c-soft な層への単射 f : F → F0 を任意にとる。このとき、coker(f)は nに対して (i)を
満たす。従って、帰納法の仮定より、coker(f)は nに対して (ii)を満たす。f の取り方は任意だったので、こ
れは F が n+ 1に対して (ii)を満たすことを意味する。さらに、帰納法の仮定より、coker(f)は nに対して
(iv)を満たす。任意に局所閉集合 U をとって、U に制限したあとでコンパクト台つきコホモロジーをとるこ
とにより、各 i ≥ 1に対して自然な同型射 Hi

c(U, coker(f))
∼−→ Hi+1

c (U,F ) を得る。coker(f)は nに対して
(iv) を満たすので、従って F は n + 1 に対して (iv) を満たす。F が n + 1 に対して (iii) を満たすと仮定す
る。c-soft な層への単射 f : F → F0 をとれば、各 i ≥ 1に対して自然な射 Hi

c(U, coker(f))
∼−→ Hi+1

c (U,F )

は同型射であるから、coker(f)は nに対して (iii)を満たす。従って、帰納法の仮定より、coker(f)は nに対
して (i) を満たす。(i) によって存在が要請される coker(f)の c-soft な層による長さ nの分解を f と繋げる
ことにより、F の c-soft な層 による長さ n+ 1の分解を得るので、F は n+ 1に対して (i)を満たす。以上
で (ii)の証明を完了する。
(iii)を示す。脆弱層が c-softであることから、不等式 F の c-soft dimension ≤ F の脆弱次元が従う。もう
一つの不等式を証明する。F の c-soft dimension が nであるとする。完全列 0 → F → F 0 → · · · → Fn で
各 j に対して F j が脆弱層であるものをとる。F の c-soft dimension が nであることから、Im(Fn−1 → Fn)

は c-soft である。従って、F の脆弱次元が n + 1以下であることを示すためには、次を示すことが十分であ
る：ToDo: enumerate

(i) 局所コンパクトハウスドルフな位相空間 X 上の層の完全列 0 → F → G → H → 0 に対して、F が
c-soft であり、Gが脆弱層であるとき、H も脆弱層である。

X は局所コンパクトであるので、各 x ∈ X に対して開近傍 x ∈ V ⊂ X であって V̄ がコンパクトとな
るものが存在する。本文 [KS, Proposition 2.4.10] の証明で示されている主張 (2.4.1) より、(i) を示すた
めには、H|V が脆弱であることを示すことが十分である。Z ⊂ V を閉集合とする。K :==

def
Z̄ ∪ (V̄ \ V )

とおく。これはコンパクト空間 V̄ の閉部分空間であるからコンパクトである。F は c-soft であるから、
item (i) より、Hi

c(X,F ) = Hi
c(X \ K,F ) = 0, (∀i > 0) が成り立つ。各 i に対して Hi

c(X \ K,F ) →
Hi+1
c,K (X,F ) → Hi+1

c (X,F ) は完全であるので、Hi
c,K(X,F ) = 0, (∀i ≥ 2) が成り立つ。K はコンパクト

であるので、Hi
c,K(X,−) ∼= Hi

K(X,−) が成り立つ。G は脆弱なので、Hi
K(X,G) = 0, (∀i > 0) が成り立

ち、従って、完全列 0 → F → G → H → 0 に函手 ΓK(X,−) を適用すると、Hi
K(X,H) = 0, (∀i > 0)

が成り立つ。H(X) → H(X \ K) → H1
K(X,H) は完全なので、従って、H(X) → H(X \ K) は全射で

ある。X \ K = (V \ Z) ∪ (X \ V̄ ) なので、H(X \ K) ∼= H(V \ Z) × H(X \ V̄ ) が成り立つ。よって
H(X)→ H(V \ Z)は全射であり、とくに H(V )→ H(V \ Z)も全射である。以上より H|V は脆弱である。
以上で (iii)の証明を完了し、問題 2.9の解答を完了する。

問題 2.10. Rを X 上の環の層として、M をR加群とする。

(i) M が入射的であるための必要十分条件は、任意の部分R-加群 I ⊂ R (これをRのイデアルという) に
対して

Γ(X,M) ∼= HomR(R,M)→ HomR(I,M)
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が全射となることである。これを示せ。
(ii) A を体とする。AX のイデアルはある開集合 U ⊂ X を用いて AU と表すことができる。このことか
ら、AX -加群M が入射的であるための必要十分条件はM が脆弱層であることであることを帰結せよ。

Proof. (i)を示す。必要性は明らかであるので十分性が問題である。R-加群 F とその部分 R-加群 G ⊂ F と
射 g : G→M を任意にとる。集合

S :==
def {(H,h)|G ⊂ H ⊂ F, h|G = g}

に
(H0,H0) ≤ (H1, h1) ⇐⇒ H0 ⊂ H1かつ h1|H0

= h0

で順序を入れる。全順序部分集合 S0 ⊂ S に対して、HS0
:==
def ⋃

H∈S0
H と定めて hS0

: HS0
→M を余極限の

普遍性により定まる自然な射とすると (HS0
, hS0

)は S0 の上界である。よって Zornの補題より S には極大限
(H,h)が存在する。H 6= F であるとする。このとき、開集合 U ⊂ X と切断 s ∈ F (U) \H(U)が存在する。
U 上の切断 sはR-加群の射RU → H と対応する。Fiber積をとって I :==

def RU ×F H とおけば、I はRU の
部分R-加群である。ここで

HomR(R,M)→ HomR(RU ,M)→ HomR(I,M)

の合成は全射であるから、HomR(RU ,M) → HomR(I,M)も全射であり、従って、自然な射影と hの合成
I → H

h−→M は射RU →M へとリフトし、可換図式

I ⊂−−−−→ RUy y
H

h−−−−→ M

を得る。Push-out をとることによって、射 h′ : H ′ :==
def RU

∐
I H →M を得る。一方、可換図式

I ⊂−−−−→ RUy ys
H

⊂−−−−→ F

で push-out をとることにより、射H ′ → F を得るが、I = RU ×F H であることと item (iii)より、H ′ → F

はモノ射である。従って H ′ ⊂ F とみなせる。s 6∈ H(U)なので H ⊊ H ′ である。これは (H,h) < (H ′, h′)

を意味し、(H,h)の極大性に反する。この矛盾はH 6= F と仮定したことにより引き起こされたので、H = F

であることが帰結し、以上で、f |G = g となる射 f : F →M の存在が示された。これは F が入射的層である
ことを示している。以上で (i)の証明を完了する。
(ii) を示す。A を体、I ⊂ AX をイデアルとする。各 x ∈ X に対して Ix ⊂ AX,x はイデアルであるが、

AX,x は体なので、Ix は 0か AX,x のいずれかである。

S :==
def {x ∈ X|Ix = AX,x}

とおき、S が開であることを示す。x ∈ S を任意にとる。Ix = AX,x であるので、ある開近傍 x ∈ U とある
切断 s ∈ I(U)が存在して、任意の y ∈ U に対して sy = 1が成り立つ。これから各 y ∈ U で Iy 6= 0である
ことが従い、Iy は 0か AX,y のいずれかであったので、Iy = AX,y が従う。よって U ⊂ S が従い、これは S
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が開であることを示している。最後の主張を示す。入射的ならば脆弱層であるため、AX -加群M が脆弱層で
ある場合にM が入射的であることを示す。M が入射的であることを示すためには、(i)より、任意のイデア
ル層 I ⊂ AX と任意の AX -加群の射 I →M に対し、それが I ⊂ AX に沿ってリフトすることを示すことが
十分である。既に証明したことにより、イデアル層 I ⊂ AX に対してある開集合 U ⊂ X が存在して I = AU

が成り立つ。AX 加群の射 AU →M はM(U)の切断と対応し、M は脆弱層であるので、それはM(X)の元
に延長することができる。このことは射 AU = I →M が AU = I ⊂ AX に沿ってリフトすることを意味し、
従ってM は入射的である。以上で (ii)の証明を完了し、問題 2.10の解答を完了する。

問題 2.11. f : Y → X を局所コンパクトハウスドルフ空間の間の連続写像、Gを Y 上の層とする。以下の
主張が同値であることを示せ：

(i) 任意の x ∈ X に対して G|f−1(x) は c-softである。
(ii) 任意の開集合 V ⊂ Y と任意の j > 0に対して Rjf!GV = 0である。

Proof. (i) ⇒ (ii) を示す。任意の x ∈ X に対して G|f−1(x) は c-soft であると仮定する。開集合 V ⊂ Y

と点 x ∈ X を任意にとる。本文 [KS, Proposition 2.6.7] より、各点 x ∈ X に対して自然に (Rjf!GV )x ∼=
Hj
c (f

−1(x) ∩ V,G|f−1(x)) が成り立つ。ここで G|f−1(x) は c-soft であるので、item (i) より、j > 0 に対
して Hj

c (f
−1(x) ∩ V,G|f−1(x)) = 0 が成り立つ。よって層 Rjf!GV の各点での stalk は 0 であり、従って

Rjf!GV = 0である。
(ii) ⇒ (i) を示す。任意の開集合 V ⊂ Y と任意の j > 0 に対して Rjf!GV = 0 であると仮定する。点

x ∈ X と開集合 Vx ⊂ f−1(x)を任意にとる。このとき、ある開集合 V ⊂ Y が存在して Vx = V ∩ f−1(x)が
成り立つ。本文 [KS, Proposition 2.6.7]より、各 j > 0に対して自然に Hj

c (Vx, G|f−1(x)) ∼= (Rjf!GV )x = 0

が成り立つ。よって item (i)より、G|f−1(x) は c-soft である。以上で問題 2.11の解答を完了する。

問題 2.12. X を位相空間とする。

(i) (Fλ)λ∈Λ を有向集合 Λで添字づけられた X 上の層の順系とする。X がコンパクトハウスドルフであ
ると仮定せよ。このとき、任意の k ∈ Nに対して colimλH

k(X,Fλ) ∼= Hk(X, colimλ Fλ) が成り立つ
ことを示せ。

(ii) (Fn)n∈N を X 上の層の逆系で、各 Fn+1 → Fn は全射であるとする。Z ⊂ X を局所閉部分集合
とする。{Hk−1

Z (X,Fn)}n∈N が Mittag-Leffler 条件を満たすと仮定せよ。このとき、自然な同型射
Hk
Z(X, limn Fn)

∼−→ limnH
k
Z(X,Fn) が存在することを示せ。

注意. (ii)は本文にはない仮定を置いている。本文を引用すると以下の通りである：
Let (Fn)n∈N be a projective system of sheaves on X and let Z be a locally closed subset of X.

Assuming that {Hk−1
Z (X,Fn)}n satisfies the M-L condition, prove the isomorphism Hk

Z(X, limn Fn)
∼−→

limnH
k
Z(X,Fn).

しかしこのままだと反例がある。X = Z = [0, 1]とする。X = Z なので Hi
Z(X,−) ∼= Hi(X,−)である。

Un = (1/2− 1/(n+2), 1/2)∪ (1/2, 1/2+ 1/(n+2))とおき、Fn :==
def ZUn と定める。Un+1 ⊂ Un であるから

Fn+1 ⊂ Fn であり、これによって層の逆系 (Fn)n∈N ができる。k = 1とする。定数層 ZX の大域切断であっ
て Un に台を持つものは 0しかないのでH0

Z(X,Fn) = H0(X,Fn) = 0が成り立ち、従って {H0
Z(X,Fn)}n は

Mittag-Leffler 条件を満たす。⋂∞
n=0 Un = ∅であるので、各X の点で stalk をとることによって limFn = 0
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が成り立つ。従って H1
Z(X, limFn) = 0である。さらに層の完全列

0→ ZUn → ZX → ZX\Un
→ 0

でコホモロジーをとる。X = [0, 1]なので、命題 2.7.3 (ii), (iii) よりH1(X,ZX) = 0である。X \Un は連結
成分が 3つなので H0(X,ZX\Un

) = Z3 である。よって完全列

0→ 0→ Z→ Z3 → H1(X,Fn)→ 0

を得る。従って H1(X,Fn) ∼= Z2 が成り立つ。また、この同型射は H1(X,Fn+1) → H1(X,Fn)と可換する
ので、よって limH1(X,Fn) ∼= Z2 が成り立つ。以上で {H0

Z(X,Fn) = 0}n が Mittag-Leffler 条件を満たす
のにもかかわらず 0 = H1

Z(X, limFn) 6∼= Z2 ∼= limH1
Z(X,Fn) となる例が構成できた。

Proof. (i)を示す。X =
⋃r
i=1 Ui を有限開被覆とする。Filtered colimitは有限極限と可換するので、

0 −−−−→ (colimFλ)(X) −−−−→
∏r
i=1(colimFλ)(Ui) −−−−→

∏r
i,j=1(colimFλ)(Ui ∩ Uj)

は完全である。X =
⋃
i∈I Ui を任意の開被覆とする。X はコンパクトであるから、

S :==
def

{
I0 ⊂ I

∣∣∣∣∣X =
⋃
i∈I0

Ui, |I0| <∞

}

は空でない有向集合である。各 I0 ⊂ I1, I0, I1 ∈ S に対して完全列の射

0 −−−−→ (colimFλ)(X) −−−−→
∏
i∈I1(colimFλ)(Ui) −−−−→

∏
i,j∈I1(colimFλ)(Ui ∩ Uj)∥∥∥ y y

0 −−−−→ (colimFλ)(X) −−−−→
∏
i∈I0(colimFλ)(Ui) −−−−→

∏
i,j∈I0(colimFλ)(Ui ∩ Uj)

ができるので、I0 ∈ S に渡って逆極限をとることにより、

0 −−−−→ (colimFλ)(X) −−−−→
∏
i∈I(colimFλ)(Ui) −−−−→

∏
i,j∈I(colimFλ)(Ui ∩ Uj)

が完全であることが従う。よって colimλH
0(X,Fλ) ∼= H0(X, colimλ Fλ) が成り立つ。

(Iλ)λ∈Λ を函手圏 [Λ,Ab(X)] の入射的対象とする。任意の 0 ∈ Λ と任意の層の単射 M → N と任意
の射 f : M → I0 に対し、M,N を 0 番目に配置して Ab(X) の図式と考えると、(Iλ)λ∈Λ が函手圏で
入射的対象であるので、λ に関して函手的に f のリフト Nλ → Iλ が得られるので、0 番目をみること
で、f のリフト N → I0 を得る。従って、各 λ に対して Iλ は入射的層である。とくに (c-)soft である。
F ⊂ X を閉集合とすると、各 Iλ(X) → Iλ(F ) は全射であるので、colim(Iλ(X)) → colim(Iλ(F )) も全
射であるが、ここで X,F はどちらもコンパクト (かつハウスドルフ) なので、すでに証明したことから、
colim(Iλ(X)) ∼= (colim Iλ)(X), colim(Iλ(F )) ∼= (colim Iλ)(F ) が成り立つ。従って colim Iλ も (c-)soft であ
ることが従う。X はコンパクトハウスドルフなので、従って colim Iλ は大域切断函手に対して acyclic であ
る。Filtered colimit をとる函手 colim : [Λ,Ab(X)]→ Ab(X)は完全函手であるから、以上より、函手

[Λ,Ab(X)]→ Ab, (Fλ)λ∈Λ 7→ Γ(X, colimFλ)

の右導来函手は RΓ(X,−) ◦ colim と自然に同型である。同様に、colim : [Λ,Ab] → Ab は完全函手なので、
函手

[Λ,Ab(X)]→ Ab, (Fλ)λ∈Λ 7→ colimΓ(X,Fλ)
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の右導来函手は colim ◦RΓ(X, (−)λ) と自然に同型である。ただし RΓ(X, (−)λ) は D≥0([Λ,Ab(X)]) から
D≥0([Λ,Ab]) への函手である ([Λ,D+(Ab)] に値を持つのではない！)。すでに証明した 0 次の場合より、
自然に Γ(X, colim(−)λ) ∼= colimΓ(X, (−)λ) が成り立つので、これらの右導来函手も自然に同型であり、
RΓ(X, colim(−)λ) ∼= colimRΓ(X, (−)λ) が成り立つ (右辺の colimは通常の余極限をとる函手の導来函手で
あり、[Λ,D+(Ab)]における余極限とは異なる)。(Fλ)λ∈Λ を代入してコホモロジーをとると、余極限をとる函
手が完全であることから

Hi(X, colimFλ) ∼= Hi(colimRΓ(X,Fλ)) ∼= colimHi(X,Fλ)

を得る。以上で (i)の証明を完了する。
(ii) を示す。(In)n∈N を圏 [N,Ab(X)] の入射的対象とする。局所閉集合 Z ⊂ X と n に対して切断

s ∈ ΓZ(X, In) を一つ選ぶと、s は層の射 ZZ → In を定める。n 番目以前が ZZ でそれ以降 0 である逆
系を ZZ(n) とおくと、s は逆系の射 ZZ(n) → (In)n∈N を定める。(In)n∈N は入射的なので、逆系の単射
ZZ(n) ⊂ ZZ(n+ 1)に沿って ZZ(n) → (In)n∈N をリフトさせることにより、ΓZ(X, In+1) → ΓZ(X, In) が
全射であることが従う。特に、各開集合 U ⊂ X に対して (ΓZ(X, In))n∈N は Mittag-Leffler 条件を満たす、
すなわち、limn に対して acyclic である。よって R(limn ◦ΓZ(X,−)) ∼= R limn ◦RΓZ(X,−) が成り立ち、逆
系 (Fn)n∈N に対してスペクトル系列

Ep,q2 = Rp lim
n
Hq
Z(X,Fn) ⇒ Ep+q = Rp+q(lim

n
◦ΓZ(X,−))(Fn)

を得る。Rp limn = 0, (p 6= 0, 1)であるので、完全列

0→ R1 lim
n
Hq
Z(X,Fn)→ E1+q → lim

n
Hq+1
Z (X,Fn)→ 0

を得る。q = k − 1 とすれば、(Hk−1
Z (X,Fn))n∈N が Mittag-Leffler 条件を満たすという仮定より、同型射

Ek
∼−→ limnH

q+1
Z (X,Fn)を得る。

次に、(In)n∈N を再び [N,Ab(X)] の入射的対象とし、U ⊂ X を開集合として、切断 s ∈ limn In(U)

を任意にとる。これは層の射 ZU → limn In と対応するが、これは各番号に ZU が対応している自明な
逆系 (ZU )n∈N からの逆系の射 (ZU )n∈N → (In)n∈N と対応する。これを単射 (ZU )n∈N → (ZX)n∈N に
沿ってリフトさせることにより、limn In(X) → limn In(U) が全射であることが従う。従って limn In は
脆弱層であり、とくに任意の局所閉集合 Z ⊂ X に対する ΓZ(X,−) に対して acyclic である。よって
R(ΓZ(X,−) ◦ limn) ∼= RΓZ(X,−) ◦R limn が成り立ち、逆系 (Fn)n∈N に対してスペクトル系列

Ēp,q2 = Hp
Z(X,R

q lim
n
Fn) ⇒ Ēp+q = Rp+q(ΓZ(X,−) ◦ lim

n
)(Fn)

を得る。ΓZ(X,−) ◦ limn
∼= limn ◦ΓZ(X,−) であるので、自然に Ēp+q ∼= Ep+q である。また、Rq limn =

0, (q = 0, 1)であるので、完全列

· · · → Ēp−2,1
2 → Ēp,02 → Ep → Ēp−1,1

2 → Ēp+1,0
2 → Ep+1 → · · ·

を得る。ここで各 Fn+1 → Fn が全射であるという仮定より、R1 limn Fn = 0が成り立つので、Ē•,1
2 = 0が

成り立つ。従って各 Ēp,02
∼−→ Ep は同型射である、すなわち、各 pに対してHp

Z(X, limn Fn)
∼−→ Ep は同型射

である。p = k とすることにより、同型射

Hk
Z(X, lim

n
Fn)

∼−→ Rk(lim
n
◦ΓZ(X,−))(Fn)

∼−→ lim
n
Hk
Z(X,Fn)

を得る。以上で (ii)の証明を完了し、問題 2.12の解答を完了する。
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問題 2.13. Gを X 上の層として、Z ⊂ X を局所閉集合とする。j < nに対して RjΓZ(G) = 0が成り立つ
と仮定せよ。このとき、前層 U 7→ Hn

Z(U,G)は層であり、さらにこれが RnΓZ(G)と等しいことを示せ。

Proof. RnΓZ(G) は層なので、問題 2.13 を示すためには、開集合 U ⊂ X に対して自然に Hn
Z(U,G) ∼=

Γ(U,RnΓZ(G))が成り立つことを証明することが十分である。F = ΓZ(−), F ′ = Γ(U,−)として問題 1.22を
適用することにより、Rn(Γ(U,ΓZ(−)))(G) ∼= Γ(U,RnΓZ(G))が成り立つ。ここで Γ(U,ΓZ(−)) ∼= ΓZ(U,−)
であるので、よって Hn

Z(U,G) ∼= Γ(U,RnΓZ(G))が成り立つ。以上で問題 2.13の解答を完了する。

問題 2.14. X =
⋃
i∈I Ui を X の開被覆とする。各 i ∈ I に対して Fi を Ui 上の層として、各 (i, j) ∈ I2

に対して同型射 ϕij : Fj |Ui∩Uj

∼−→ Fi|Ui∩Uj
が与えられているとする。ϕii = idFi

であり、さらに任意の
(i, j, k) ∈ I3 に対して Ui ∩ Uj ∩ Uk 上で ϕij ◦ ϕjk = ϕik が成り立つと仮定せよ。このとき、X 上の層 F と
各 i ∈ I に対する同型射 ϕi : F |Ui

∼−→ Fi であって、任意の (i, j) ∈ I2 に対して Ui ∩ Uj 上で ϕij = ϕi ◦ ϕ−1
j

が成り立つもの、が up to isomorphism で一意的に存在することを示せ。

Proof. 圏 I を次で定義する：

• 対象の集合は Ob(I) :==def I3.
• HomI((i, j, k), (i

′, j′, k′))は {i, j, k} ⊃ {i′, j′, k′}である場合は一点集合で、そうでない場合は ∅と定
める。

{i, j, k} = {i′, j′, k′} である場合、またその場合に限り (i, j, k)→ (i′, j′, k′)は同型射である。
Uij :==

def
Ui ∩ Uj , Uijk :==

def
Ui ∩ Uj ∩ Uk とおき、fi : Ui → X, fij : Uij → X, fijk : Uijk → X をそれ

ぞれ包含射とする。各 (i, j, k) ∈ I に対して X 上の層 F (i, j, k) を P (i, j, k) :==
def
fijk,!(Fi|Uijk

) と定義する
(P (i, i, i) = fi!Fi である)。各 I の射 p : (i, j, k) → (i′, j′, k′)に対して Uijk ⊂ Ui′j′k′ であるので、自然な包
含射 ψ(p)(−) : fi′j′k′,!((−))|Uijk

) ⊂ fi′j′k′,!((−)|Ui′j′k′ ) がある。また、i′ ∈ {i, j, k}であるので Uijk ⊂ Uii′

である。P (p) :==def ψ(p)(Fi′) ◦ fijk,!(ϕi′i|Uijk
) と定義する。この対応によって、P : I → Ab(X) は函手にな

る。それを確かめるために、I の射の列 (i, j, k)
p−→ (i′, j′, k′)

q−→ (i′′, j′′, k′′) を任意にとる。P が函手である
ためには、P (q ◦ p) = P (q) ◦ P (p) が成り立つことが十分である。i′′ ∈ {i′, j′, k′} ⊂ {i, j, k} であるので、
Uijk ⊂ Uii′ ∩ Ui′i′′ が成り立つ。従って

fijk,!(ϕi′′i|Uijk
) = fijk,!(ϕi′′i′ |Uijk

◦ ϕi′i|Uijk
) = fijk,!(ϕi′′i′ |Uijk

) ◦ fijk,!(ϕi′i|Uijk
)

が成り立つ。また、定義より、函手の射として ψ(q ◦ p) = ψ(q) ◦ ψ(p)が成り立つ。また、ψ(p)が自然変換で
あることから、図式

fijk,!(Fi′ |Uijk
)

fijk,!(φi′′i′ |Uijk
)

−−−−−−−−−−−→ fijk,!(Fi′′ |Uijk
)

ψ(p)(Fi′ )

y yψ(p)(Fi′′ )

fi′j′k′,!(Fi′ |Ui′j′k′ )
fi′j′k′,!(φi′′i′ |Ui′j′k′ )

−−−−−−−−−−−−−−→ fi′j′k′,!(Fi′′ |Ui′j′k′ )

は可換である。以上より、

P (q ◦ p) = ψ(q ◦ p)(Fi′′) ◦ fijk,!(ϕi′′i′ |Uijk
)

= ψ(q)(Fi′′) ◦ ψ(p)(Fi′′) ◦ fijk,!(ϕi′′i′ |Uijk
) ◦ fijk,!(ϕi′i|Uijk

)

= ψ(q)(Fi′′) ◦ fi′j′k′,!(ϕi′′i′ |Ui′j′k′ ) ◦ ψ(p)(Fi′) ◦ fijk,!(ϕi′i|Uijk
)
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= P (q) ◦ P (p)

が成り立つ。よって P : I → Ab(X)は函手である。
F :==

def
colimP とおく。各 x ∈ X で stalk をとると図式 P の射は 0 射と同型射の図式となる。従っ

て、自然な射 Pi : P (i, i, i) = fi,!Fi → F を Ui へと制限したものは層の同型射である。その逆射を
ϕi :==

def
P−1
i : F |Ui

→ Fi とおく。図式

P (j, j, i) −−−−→ P (j, j, j)
Pj−−−−→ F

fij,!(φij)

y ∥∥∥
P (i, j, j) −−−−→ P (i, i, i)

Pi−−−−→ F

は可換であり、P (j, j, i)→ P (j, j, j)と P (i, j, j)→ P (i, i, i)を Uij へと制限すると idFj |Uij
と idFi|Uij

にな
るので、従って Uij 上で ϕij = ϕi ◦ ϕ−1

j が成り立つ。
別の F ′ がこの性質を満たせば、余極限の普遍性により射 F → F ′ が得られ、これは各点の stalk で同型射
であるので、このような F は up to isom. で一意的に存在する。以上で問題 2.14の証明を完了する。

問題 2.15. (i) F • を下に有界な X 上の層の複体とする。自然な射 Hj(Γ(X,F •))→ Hj(RΓ(X,F •)) を
構成せよ。

(ii) U = {Ui}i を X の開被覆として、F を X 上の層とする。自然な射 Hj(C•(U , F )) → Hj(X,F )を構
成せよ。

Proof. (i) を示す。入射的層からなる複体へのモノな擬同型 F • qis−−→ I• をとれば複体の射 Γ(X,F •) →
Γ(X, I•) ∼= RΓ(X,F •) Γ(X,F •) → Γ(X, I

•) ∼= RΓ(X,F •) が得られるので、j 次コホモロジーをとること
によって射 Hj(Γ(X,F •))→ Hj(RΓ(X,F •)) を得る。以上で (i)の証明を完了する。
(ii) を示す。F を 0 次だけが F で他が 0 である自明な複体とみなすと、本文 [KS, Proposition 2.8.4]

より、augmentation map δ : F
qis−−→ C•(U , F ) は擬同型である。よって D+(Ab(X)) の同型射 RΓ(X, δ) :

RΓ(X,F )
∼−→ RΓ(X, C•(U , F )) を得る。(i) を F • = C•(U , F ) に対して適用すると、Γ(X, C•(U , F )) ∼=

C•(U , F ) であるので、射 Hj(C•(U , F ))→ Hj(RΓ(X, C•(U , F ))) を得る。これに Hj(RΓ(X, δ)−1)を合成
することで射 Hj(C•(U , F )) → Hj(X,F ) を得る。以上で (ii) の証明を完了し、問題 2.15 の解答を完了す
る。

問題 2.16. A を可換環、A× を単元のなす群とする。X を位相空間、U = {Ui}i を X の開被覆として、
c ∈ C2(U , A×

X) を δc = 0 となる元とする。c′ を c の H2(C•(U , A×
X)) での剰余類として、c′′ を c′ の

H2(X,A×
X)での像とする (cf. item (ii))。圏 Sh(X, c)を次によって定義する：

• 対象は AUi -加群 Fi と同型射 ρij : Fj |Ui∩Uj

∼−→ Fi|Ui∩Uj の族 {Fi, ρij}で、任意の i, j, k に対して

ρijρjkρki = cijk idFi|Ui∩Uj∩Uk

を満たすものとする。
• 射 f : {Fi, ρij} → {F ′

i , ρij}は Ui 上の射の族 fi : Fi → F ′
i で Ui ∩Uj 上で ρ′ij ◦ fj = fi ◦ ρij を満たす

ものとする。

以下を示せ：
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(i) Sh(X, c)はアーベル圏であることを証明せよ。
(ii) c̃ ∈ C2(U , A×

X)を別の元で c̃′′ = c′′ を満たすものとする。Sh(X, c)と Sh(X, c̃)の間の圏同値が存在す
ることを示せ。

Proof. (i)を示す。Sh(X, c)は明らかな 0-対象を持つ (各 Ui 上で 0であるもの)。また、明らかに、二つの対
象 {Fi, ρij}, {F ′

i , ρ
′
ij}に対して {Fi ⊕ F ′

i , ρij ⊕ ρ′ij}は Sh(X, c)の対象である。さらに、二つの対象の間の射
f = (fi) : {Fi, ρij} → {F ′

i , ρ
′
ij}に対し、各 iごとに ker(fi)をとり、ρker(f)ij :==

def
ρij |ker(fi)|Ui∩Uj

と定めること
により、明らかに {ker(fi), ρker(f)ij } は Sh(X, c) の対象となる。余核についても同様である。核と余核が各 i

ごとに定義されるので、余像と像は一致し、これにより Sh(X, c)がアーベル圏であることが従う。以上で (i)

の証明を完了する。
(ii) を示す。{Fi, ρij} を Sh(X, c) の対象とする。c̄ :==

def
c − c̃ とおく。このとき c̄′′ = 0 である。

本文 [KS, Proposition 2.8.4] より、augmentation map δ : F
qis−−→ C•(U , F ) は擬同型であるので、

H2(RΓ(X, C•(U , A×
X)))での c̄′′ の像は 0である。

問題 2.17. X を局所コンパクト空間、R を X 上の (可換) 環の層で wgld(R) < ∞ であるものとし、
Z1, Z2 ⊂ X を局所閉部分集合とする。

(i) F1, F2 ∈ D+(R)に対し、自然な射

RΓZ1(F1)⊗LR RΓZ2(F2)→ RΓZ1∩Z2(F1 ⊗LR F2)

を構成せよ。
(ii) Aを可換環として、R = AX であると仮定せよ。F1, F2 ∈ D+(R)に対し、自然な射

RΓZ1
(X,F1)⊗LA RΓZ2

(X,F2)→ RΓZ1∩Z2
(X,F1 ⊗LA F2)

を構成し、各 p, q ∈ Zに対して

Hp
Z1
(X,F1)⊗A Hq

Z2
(X,F2)→ Hp+q

Z1∩Z2
(X,F1 ⊗LA F2)

を構成せよ。最後の射は cup積と呼ばれる。

Proof. (i)を示す。本文 [KS, 同型 (2.6.9)]より、自然に RΓZi
(Fi) ∼= RHomR(RZi

, Fi)が成り立つ。また、
本文 [KS, 射 (2.6.11)]より、自然な射

RHomR(RZ1
, F1)⊗LR RHomR(RZ2

, F2)→ RHomR(RZ1
, F1 ⊗LR RHomR(RZ2

, F2))

→ RHomR(RZ1
, RHomR(RZ2

, F1 ⊗LR F2))

を得る。さらに本文 [KS, Proposition 2.6.3 (ii)]より、自然な同型

RHomR(RZ1
, RHomR(RZ2

, F1 ⊗LR F2)) ∼= RHomR(RZ1
⊗LR RZ2

, F1 ⊗LR F2))

を得る。ここでRZi
は R-flat であるので、自然にRZ1

⊗LRRZ2
∼= RZ1

⊗RRZ2
∼= RZ1∩Z2

が成り立つ。再
び本文 [KS, 同型 (2.6.9)]を用いることで、自然に RΓZ1∩Z2

(F1 ⊗LR F2) ∼= RHomR(RZ1∩Z2
, F1 ⊗LR F2) が

成り立つので、これらを組み合わせることによって所望の射を得る。以上で (i)の証明を完了する。
(ii) を示す。f : X → {pt} を自明な射とする。まず、Z1 = Z2 = X の場合に証明する。この場合、

RΓZi
(X,−) ∼= Rf∗(−) が成り立つ。今、R = AX = f−1A は定数層であるので、従って、本文 [KS,

63



Proposition 2.6.4 (ii)]より、自然に

HomD+(A)(Rf∗F1 ⊗LA Rf∗F2, Rf∗(F1 ⊗LAX
F2)) ∼= HomD+(AX)(f

−1(Rf∗F1 ⊗LA Rf∗F2), F1 ⊗LAX
F2)

が成り立つ。また、本文 [KS, Proposition 2.6.5]より、自然に f−1(Rf∗F1 ⊗LA Rf∗F2) ∼= (f−1Rf∗F1)⊗LAX

(f−1Rf∗F2)が成り立つ。本文 [KS,射 (2.6.17)]より、自然な射 (f−1Rf∗F1)⊗LAX
(f−1Rf∗F2)→ F1⊗LAX

F2

があり、以上より射

HomD+(AX)(F1 ⊗LAX
F2, F1 ⊗LAX

F2)→ HomD+(AX)((f
−1Rf∗F1)⊗LAX

(f−1Rf∗F2), F1 ⊗LAX
F2)

∼= HomD+(AX)(f
−1(Rf∗F1 ⊗LA Rf∗F2), F1 ⊗LAX

F2)

∼= HomD+(A)(Rf∗F1 ⊗LA Rf∗F2, Rf∗(F1 ⊗LAX
F2))

を得る。idの行き先が射 Rf∗F1 ⊗LA Rf∗F2 → Rf∗(F1 ⊗LAX
F2)を与える。以上で Z1 = Z2 = X の場合の 1

つ目の射の構成を完了する。一般の場合、(i)の自然な射に対して RΓ(X,−)を適用し、Z1 = Z2 = X の場合
に得られた射と合成することによって、射

RΓZ1
(X,F1)⊗LA RΓZ2

(X,F2) ∼= RΓ(X,RΓZ1
(F1))⊗LA RΓ(X,RΓZ2

(F2))

→ RΓ(X,RΓZ1(F1)⊗LAX
RΓZ2(F2))

→ RΓ(X,RΓZ1∩Z2(F1 ⊗LAX
F2))

∼= RΓZ1∩Z2
(X,F1 ⊗LAX

F2)

を得る。以上で一般の場合の 1 つ目の射の構成を完了する。二つ目の射は、item (i) で F = ⊗A, X =

RΓZ1
(X,F1), Y = RΓZ2

(X,F2) とすることにより、自然な射

Hp
Z1
(X,F1)⊗A Hq

Z2
(X,F2)→ Hp+q(RΓZ1

(X,F1)⊗LA RΓZ2
(X,F2))

→ Hp+q(RΓZ1∩Z2(X,F1 ⊗LAX
F2))

を得る。これが所望の射である。以上で (ii)の証明を完了し、問題 2.17の解答を完了する。

問題 2.18. Sを位相空間、X1, X2, Y1, Y2を S上の局所コンパクトハウスドルフ空間、fi : Yi → Xi, (i = 1, 2)

を S 上の射とする。pYi
: Yi → S を構造射として、f = f1 ×S f2 : Y1 ×S Y2 → X1 ×S X2 とおく。Rを S

上の可換環の層で、wgld(R) <∞と仮定する。Gi ∈ D+(p−1
Yi
R)とする。

(i) 以下の同型射の存在を示せ：

Rf1!G1 ⊠LS,R Rf2!G2
∼−→ Rf!(G1 ⊠LS,R G2).

この同型射はKünnethの公式として知られている。
(ii) S = X1 = X2 = {pt}として、Rを体とする。以下を示せ：

Hn
c (Y1 × Y2, G1 ⊠G2) ∼=

⊕
p+q=n

(Hp
c (Y1, G1)⊗Hq

c (Y2, G2)).
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Proof. (i)を示す。以下のように射に名前をつける (それぞれの四角形は Cartesian である)：

Y1 ×S Y2
f ′′
1−−−−→ X1 ×S Y2

q′2−−−−→ Y2

f ′′
2

y yf ′
2

yf2
Y1 ×S X2

f ′
1−−−−→ X1 ×S X2

q′2−−−−→ X2

q′1

y yq1 y
Y1

f1−−−−→ X1 −−−−→ S.

また、r1 :==
def
q′1 ◦ f ′′2 , r2 :==

def
q′2 ◦ f ′′1 とおき、X1 ×S X2 → S を g とおいて、h :==

def
g ◦ f とおく。示すべきこと

は、自然な同型射
q−1
1 Rf1!G1 ⊗Lg−1R q−1

2 Rf2!G2
∼−→ Rf!(r

−1
1 G1 ⊗Lh−1R r−1

2 G2)

の存在であるが、それは以下のように示される：
q−1
1 Rf1!G1 ⊗Lg−1R q−1

2 Rf2!G2
∼−→ Rf ′1!q

′
1
−1
G1 ⊗Lg−1R Rf ′2!q

′
2
−1
G2 (1)

∼−→ Rf ′1!(q
′
1
−1
G1 ⊗Lf ′

1
−1g−1R f ′1

−1
Rf ′2!q

′
2
−1
G2) (2)

∼−→ Rf ′1!(q
′
1
−1
G1 ⊗Lf ′

1
−1g−1R Rf ′′2!f

′′
1
−1
q′2

−1
G2) (3)

= Rf ′1!(q
′
1
−1
G1 ⊗Lf ′

1
−1g−1R Rf ′′2!r

−1
2 G2) (4)

∼−→ Rf ′1!Rf
′′
2!(f

′′
2
−1
q′1

−1
G1 ⊗Lf ′′

2
−1f ′

1
−1g−1R r−1

2 G2) (5)

∼−→ Rf!(r
−1
1 G1 ⊗Lh−1R r−1

2 G2), (6)

ただしここで、(1)の部分に本文 [KS, Proposition 2.6.7]を用い、(2)の部分に本文 [KS, Proposition 2.6.6]

を用い、(3)の部分に本文 [KS, Proposition 2.6.7]を用い、(4)の部分に等式 r2 = q′2 ◦ f ′′1 を用い、(5)の部分
に本文 [KS, Proposition 2.6.6] を用い、(6)の部分に等式 f = f ′1 ◦ f ′′2 , r1 = q′1 ◦ f ′′2 , h = g ◦ f ′1 ◦ f ′′2 を用い
た。以上で (i)の証明を完了する。
(ii)を示す。Rは体なので、任意の R-加群 (f−1R-加群) は平坦であり、従って ⊗L ∼= ⊗,⊠L ∼= ⊠が成り
立つ。また、(i)で S = X1 = X2 = {pt}とすることで、同型射

RΓc(X,G1)⊗RΓc(X,G2)
∼−→ RΓc(X,G1 ⊠G2)

を得る。ここで item (ii) を F = ⊗, X = RΓc(X,G1), Y = RΓc(X,G2)として適用することにより、⊕
p+q=n

(Hp
c (X,G1)⊗Hq

c (X,G2)) ∼= Hn(RΓc(X,G1)⊗RΓc(X,G2))
∼−→ Hn

c (X,G1 ⊠G2)

を得る。以上で (ii)の証明を完了し、問題 2.18の解答を完了する。

感想. (i)の本文のヒント、何あれ??

問題 2.19. X を局所コンパクト空間として、Aを可換環で wgld(A) <∞であるものとする。F ∈ D+(AX)

として、Ω, Z ⊂ X をそれぞれ開集合と閉集合とする。aX を一意的な射 X → {pt}とする。以下を示せ：
RΓ(Ω, F ) ∼= RaX∗RHom(AΩ, F ), (7)

RΓc(Ω, F ) ∼= RaX!(AΩ ⊗L F ), (8)

RΓZ(X,F ) ∼= RaX∗RHom(AZ , F ), (9)

RΓc(Z,F ) ∼= RaX!(AZ ⊗L F ). (10)
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Proof. (7)と (9)を示す。F を入射的とすると、本文 [KS, Proposition 2.4.6 (vii)]より、Hom(−, F )は脆弱
層である。従って、aX∗ = Γ(X,−)に関して acyclic である。よって

R(aX∗ ◦ Hom(AΩ,−)) ∼= RaX∗ ◦RHom(AΩ,−), R(aX∗ ◦ Hom(AZ ,−)) ∼= RaX∗ ◦RHom(AZ ,−),

が成り立つ。ここで Ω ⊂ X は開であるので、aX∗ ◦ Hom(AΩ,−) ∼= Γ(Ω,−)が成り立ち、Z ⊂ X は閉であ
るので、aX∗ ◦ Hom(AZ ,−) ∼= ΓZ(X,−)が成り立つ。よって

RΓ(Ω,−) ∼= RaX∗ ◦RHom(AΩ,−), RΓZ(X,−) ∼= RaX∗ ◦RHom(AZ ,−),

が成り立つ。以上で (7)と (9)の証明を完了する。
(8)と (10)を示す。Z を局所閉集合とする。AZ は AX -flat なので、AZ ⊗L (−) ∼= AZ ⊗ (−) が成り立つ。
また、本文 [KS, Proposition 2.3.10]より、AZ ⊗ (−) ∼= (−)Z が成り立つ。さらに、(−)Z は完全函手である
ので、従って、

RaX! ◦ (−)Z ∼= R(aX! ◦ (−)Z) ∼= RΓc(Z,−)

が成り立つ。Z を開または閉とすることにより、(8)と (10)が従う。以上で問題 2.19の解答を完了する。

問題 2.20. Aを可換環で、wgld(A) <∞であるものとする。Eを有限次元実線形空間とする。s : E×E → E

を足し算写像とし、F,G ∈ D+(AE) に対して F ∗ G :==
def

Rs!(F ⊠L G) と定める。これを D+(AE) 上の
convolution作用素という。

(i) F,G,H ∈ D+(AE)に対し、F ∗G ∼= G ∗ F, F ∗ (G ∗H) ∼= (F ∗G) ∗H,A{0} ∗ F ∼= F が成り立つこ
とを示せ。

(ii) Z1, Z2 ⊂ E をコンパクト凸集合とする。AZ1 ∗AZ2
∼= AZ1+Z2 であることを示せ。

(iii) γ を proper closed convex cone とするとき、Aγ ∗AInt(γ) = 0であることを示せ。
(iv) E = Rn であると仮定せよ。Z1 :==

def
[−1, 1]n, Z2 :==

def
(−1, 1)n とする。AZ1

∗ AZ2
∼= A{0}[−n− 1]であ

ることを示せ。

注意. (iii)で「proper cone」の意味がよくわからなかった (本文に定義書いてましたっけ...) のでWikipedia

を参考にして次の性質を満たす錐 γ のことと解釈しました:

• Int(γ) 6= ∅である。
• {x,−x} ∈ γ ならば x = 0である (つまりWikipedia で突錐と呼ばれているものである)。

以下の解答ではこれら二つの条件はどちらも (iii) を解くのに用いられますが、別の解法で突錐であることを
仮定せずとも (iii)が解けるのであれば、気になります。

注意. (iv)は本文ではシフトが −nになっていましたが、−n− 1な気がします。気のせいでしょうか。

Proof. (i) を示す。p1, p2 : E × E → E を第一射影、第二射影として、p : E × E E−→ ×E を成分を入れ
替えることによって得られる同相写像とする。まず F ∗ G ∼= G ∗ F を示す。p は同相写像であるので、
Rp! ∼= Rp∗ ∼= p−1 が成り立つ。s = s ◦ p, p2 = p1 ◦ p, p1 = p2 ◦ pであるので、従って、

Rs!(p
−1
1 F ⊗L p−1

2 G) ∼= Rs!Rp!(p
−1
1 F ⊗L p−1

2 G)

∼= Rs!p
−1(p−1

1 F ⊗L p−1
2 G)

∼= Rs!(p
−1p−1

1 F ⊗L p−1p−1
2 G)
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∼= Rs!(p
−1
2 F ⊗L p−1

1 G)

∼= Rs!(p
−1
1 G⊗L p−1

2 F )

が成り立つ。以上で F ∗G ∼= G ∗ F が示された。
次に F ∗ (G ∗ H) ∼= (F ∗ G) ∗ H を示す。qij : E × E × E → E × E を第 ij 成分への射影とし、

qi : E ×E ×E → E を第 i成分への射影とする。s̄ : E ×E ×E → E を足し算写像とする。このとき、図式

E × E × E id×s−−−−→ E × E

q23

y yp2
E × E s−−−−→ E

は Cartesian である。従って自然な同型射 p−1
2 ◦Rs!

∼−→ R(id×s)! ◦ q−1
23 が存在する。よって、

F ∗ (G ∗H) = Rs!(p
−1
1 F ⊗L p−1

2 Rs!(p
−1
1 G⊗L p−1

2 H))
∼−→ Rs!(p

−1
1 F ⊗L R(id×s)!q−1

23 (p
−1
1 G⊗L p−1

2 H))
∼−→ Rs!(p

−1
1 F ⊗L R(id×s)!(q−1

23 p
−1
1 G⊗L q−1

23 p
−1
2 H))

∼= Rs!(p
−1
1 F ⊗L R(id×s)!(q−1

2 G⊗L q−1
3 H)) (11)

∼−→ Rs!R(id×s)!((id×s)−1p−1
1 F ⊗L q−1

2 G⊗L q−1
3 H) (12)

∼= Rs̄!(q
−1
1 F ⊗L q−1

2 G⊗L q−1
3 H) (13)

が成り立つ。ただしここで (11) の箇所に等式 p1 ◦ q23 = q2, p2 ◦ q23 = q3 を用い、(12) の箇所に本文
[KS, Proposition 2.6.6] を用い、(13) の箇所に等式 s ◦ (id×s) = s̄, p1 ◦ (id×s) = q1 を用いた。同様に
(F ∗G) ∗H ∼= Rs̄!(q

−1
1 F ⊗L q−1

2 G⊗L q−1
3 H) が従う。以上より F ∗ (G ∗H) ∼= (F ∗G) ∗H が成り立つ。

次に A{0} ∗ F ∼= F を示す。i : E ∼= {0} × E → E × E を包含射とする。iは閉部分集合の上への同相写像
なので、i! は完全函手である (cf. 本文 [KS, Proposition 2.5.4 (i)])。従って、

A{0} ∗ F = Rs!(p
−1
1 A{0} ⊗L p−1

2 F )

= Rs!(A{0}×E ⊗L p−1
2 F )

∼= Rs!((p
−1
2 F ){0}×E) (14)

∼−→ Rs!i!(i
−1p−1

2 F ) (15)
∼−→ F (16)

が成り立つ。ただしここで (14)の箇所に本文 [KS, Proposition 2.3.10]と A{0}×E が AE×E-flat であること
を用い、(15)の箇所に本文 [KS, Proposition 2.5.4(ii)] を用い、(16)の箇所に等式 s ◦ i = idE , p2 ◦ i = idE

を用いた。以上で (i)の証明を完了する。
(ii)を示す。AZi

は AE-flatなので、p−1
1 AZ1

∼= AZ1×E と p−1
2 AZ2

∼= AE×Z2
もAE×E-flatである。従って

p−1
1 AZ1

⊗L p−1
2 AZ2

∼= AZ1×E ⊗AE×Z2
∼= A(Z1×E)∩(E×Z2) = AZ1×Z2

が成り立つ。p : Z1 × Z2 → Z1 + Z2 を s の制限 (足し算写像) とする。AZ1×Z2
∼= p−1AZ1+Z2

が成り立
つ。p はコンパクト空間からコンパクト空間への射なので固有である。従って p! = p∗ が成り立つ。Z1, Z2

は凸であるので、Z1 × Z2 ⊂ E × E はコンパクト凸集合である。従って、任意の点 z ∈ Z1 + Z2 に対して、
p−1(z) = (Z1 × Z2) ∩ s−1(z) はコンパクト凸集合と閉凸集合の共通部分であり、再びコンパクト凸集合、と
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くに可縮となる。すなわち、p の各 fiber は可縮である。よって、i : Z1 + Z2 → E を包含射とすれば、本
文 [KS, Corollary 2.7.7 (iv)] より、自然な射 i−1AE

∼−→ Rp∗p
−1i−1AE ∼= Rp!p

−1i−1AE は同型射である。
j : Z1 × Z2 → E × E を包含射とすれば、i ◦ p = s ◦ j であるから、従って、とくに

AZ1+Z2
∼= i!i

−1AE ∼= i!(Rp!p
−1i−1AE) ∼= R(s ◦ j)!(s ◦ j)−1AE ∼= Rs!AZ1×Z2

∼= AZ1
∗AZ2

が成り立つ。以上で (ii)の証明を完了する。
(iii)を示す。p1, p2 : E×E → Eを第一、第二射影とする。p−1

1 Aγ⊗L p−1
2 AInt(γ)

∼= Aγ×Int(γ)である。(iii)

を示すためには、Rs!Aγ×Int(γ) = 0を示すことが十分である。各 z ∈ Eに対して i : E ∼= s−1(z)→ E×Eを包
含射とする。このとき、本文 [KS, Proposition 2.6.7]より、(Rs!Aγ×Int(γ))z ∼= RΓc(s

−1(z), Aγ×Int(γ)|s−1(z))

が成り立つ。(10)の証明で行ったように、Z が局所閉集合である場合にも (10)の等式が成立する。従って、
本文 [KS, Remark 2.6.9 (iii)]より、

RΓc(s
−1(z), Aγ×Int(γ)|s−1(z)) ∼= RΓc(s

−1(z) ∩ (γ × Int(γ)), As−1(z))

∼= RΓc(s
−1(z) ∩ (γ × Int(γ)), As−1(z)∩(γ×Int(γ)))

が成り立つ。従って、Rs!Aγ×Int(γ) = 0 を示すためには、各 z ∈ E に対して RΓc(s
−1(z) ∩ (γ ×

Int(γ)), As−1(z)∩(γ×Int(γ))) = 0 であることを示すことが十分である。ここで s−1(z) ∩ (γ × Int(γ)) = ∅
であれば明らかにこの等式が成り立つので、以下、s−1(z) ∩ (γ × Int(γ)) 6= ∅ であると仮定して
RΓc(s

−1(z) ∩ (γ × Int(γ)), As−1(z)∩(γ×Int(γ))) = 0 を示す。このとき、成分ごとに足すことによっ
て z ∈ Int(γ) であることが従う。簡単のため X :==

def
s−1(z) ∩ (γ × Int(γ)) とおく。示すべきことは

RΓc(X,AX) = 0である。
a ∈ Int(γ)を一つとり、以下固定する。Kn :==

def
(γ× (a/n+γ))∩X ⊂ X とおく。このとき、X =

⋃
n∈NKn

が成り立つ。Kn に関して以下を主張を示す：ToDo: enumerate

(i) Kn はコンパクトである。
(ii) X \Kn は可縮である。

(i) を示す。もし Kn がコンパクトでなければ、点列コンパクトでないので、Kn 内で収束しない点列
vi = (wi, z − wi) ∈ Kn が存在する。もし数列 ‖wi‖ が N で抑えられるとすれば、γ は閉であるから、
γ∩[−N,N ]dimE はコンパクトであり、また、wi ∈ γ∩[−N,N ]dimE であるので、従ってwiは γ∩[−N,N ]dimE

内で収束する。これは vi が K 内で収束しないということに反する。従って ‖wi‖は非有界である。γ 内の点
列 wi/‖wi‖ ∈ γ と (z −wi)/‖wi‖はノルムが有界なので γ 内で収束する。w :==

def
limwi/‖wi‖ ∈ γ とおく。こ

こで ‖wi‖ → ∞であるから z/‖wi‖ → 0であり、(z − wi)/‖wi‖ → −w ∈ γ が成り立つ。一方、γ は突であ
るので、これは w = 0を意味する。しかしながら、‖wi/‖wi‖‖ = 1であるため、‖w‖ = 1であり、これは矛
盾している。以上より Kn は点列コンパクトである。今、Kn は有限次元実線形空間の部分空間なので、Kn

はコンパクトである。
(ii) を示す。z ∈ Int(γ) であるので、十分大きい N � n + 1 をとれば、z − a/N ∈ γ が成り立つ。

a/N 6∈ (a/n+ γ)であるので、従って (z− a/N, a/N) ∈ X \Kn である。点 v = (v1, v2) ∈ X \Kn を任意に
とる。このとき、v2 6∈ (a/n+ γ)が成り立つ。ある t, u > 0, t+ u = 1が存在して、ta/N + uv2 ∈ (a/n+ γ)

が成り立つと仮定する。このとき、ある v3 ∈ γ が存在して、ta/N + uv2 = a/n + v3 が成り立つ。整理す
れば、

uv2 =
u

n
a+

1− u
n

a+ v3 −
t

N
a
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v2 =
1

n
a+

1

u

(
v3 +

(
t

n
− t

N

)
a

)
となるので、N � n + 1 であることから、v2 ∈ (a/n + γ) が従う。これは矛盾である。よって v2 と a/N

を結ぶ線分は a/n + γ と交わらない。従って v = (v1, v2)と (z − a/N, a/N)を結ぶ線分は Kn と交わらず、
X \Kn は星状であることが従う。よってとくに X \Kn は可縮である。
RΓc(X,AX) = 0 を示す。コンパクト部分集合 K ⊂ X の集合は包含関係に関して有向集合であり、
{Kn|n ∈ N}はその cofinalな部分集合をなす。従って、本文 [KS, Notations 2.6.8]の最後の記述より、任意
の F ∈ Ab(X) に対して Hj

c (X,F )
∼= colimnH

j
Kn

(X,F ) が成り立つ。X は可縮であり、さらに十分大きな
n に対して X \Kn も可縮であるので、本文 [KS, Corollary 2.7.7 (iii)] より、十分大きな n に対して A ∼=
RΓ(X,AX) ∼= RΓ(X\Kn, AX\Kn

)が成り立つ。従って任意の iに対してHi(X,AX)→ Hi(X\Kn, AX)は
同型射である (i = 0の場合は idA で、他の次数ではどちらも 0)。よって任意の iに対して Hi

Kn
(X,AX) = 0

が従い、とくに Hi
c(X,AX) = 0が成り立つ。これは RΓc(X,AX) = 0を意味する。以上で (iii)の証明を完

了する。
(iv) を示す。p1, p2 : E × E → E を第一、第二射影とする。p−1

1 AZ1
⊗L p−1

2 AZ2
∼= AZ1×Z2

であ
る。Rs!AZ1×Z2

を計算しなければならない。z ∈ E を任意にとる。S(z) = s−1(z) ∩ (Z1 × Z2) とお
く。Rs!AZ1×Z2

∼= RΓc(S(z), AS(z)) である。従って、(iv) を示すためには、(z, i) 6= (0, n) に対して
Hi
c(S(z), AS(z)) = 0 であり、Hn

c (S(z), AS(z))
∼= A であることを示すことが十分である。S ⊂ E に対

して z + S = {z + v|v ∈ S}とおく。v = (v1, v2) ∈ S(z)は v1 + v2 = z, v1 ∈ Z1, v2 ∈ Z2 を満たす。従っ
て、v1− z = −v2 ∈ Z2 が成り立つ (Z2 は原点対称であることに注意)。すなわち、v1 ∈ Z1 ∩ (z+Z2)が成り
立つ。よって Z1 ∩ (z+Z2)→ S(z), v1 7→ (v1, z− v1) は同相写像である。これにより S(z)を Z1 ∩ (z+Z2)

と同一視する。Sk(z) :==def Z1 ∩ (z + [−1 + 1/k, 1 − 1/k]n) とおく。S(z) = ⋃
k∈N Sk(z) が成り立つ。また、

Sk(z)はコンパクト空間二つの共通部分であるから、コンパクトである。
z 6= 0 に対して Hi

c(S(z), AS(z)) = 0 を示す。1/k0 < min{|z1|, · · · , |zn|} となる k0 をとれば、任意
の k ≥ k0 に対して、S(z) \ Sk(z) は、zi 6= 0 となる座標を zi/|zi| 側へと潰すホモトピーによって、
可縮である。また、S(z) =

⋃
k≥k0 Sk(z) であるので、本文 [KS, Notations 2.6.8] の最後の記述より、

Hi
c(S(z), AS(z))

∼= colimk≥k0 H
i
Sk(z)

(S(z), AS(z)) が成り立つ。さらに、S(z)と S(z) \ Sk(z)はともに可縮
であるから、本文 [KS, Corollary 2.7.7 (iii)] より、RΓ(S(z), AS(z)) ∼= RΓ(S(z) \ Sk(z), AS(z)\Sk(z))

∼= A

が成り立つ。従って、RΓSk(z)(S(z), ASk(z))
∼= 0 であり、とくに Hi

Sk(z)
(S(z), AS(z)) = 0 である。よって

Hi
c(S(z), AS(z)) = 0が従う。
z = 0とする。S(0)\Sk(0)は n次元球面 Snとホモトピックであり、Mayer-Vietoris完全列 (cf. 本文 [KS,

Remark 2.6.10]) と本文 [KS, Corollary 2.7.7 (iii)]を用いて、帰納法により、RΓ(S(0)\Sk(0), AS(0)\Sk(0))
∼=

A ⊕ A[−n] が従う。S(0) は可縮なので、本文 [KS, Corollary 2.7.7 (iii)] より RΓ(S(0), AS(0)) ∼= A で
ある。以上より、RΓSk(0)(S(0), AS(0))

∼= A[−n − 1] が成り立つ。従って、とくに i 6= n + 1 に対し
て Hi

Sk(0)
(S(0), AS(0)) ∼= 0 であり、i = n + 1 に対しては Hn+1

Sk(0)
(S(0), AS(0)) ∼= A である。S(0) =⋃

k∈N Sk(0) であるから、任意の i に対して Hi
c(S(0), AS(0))

∼= colimk∈NH
i
Sk(0)

(S(0), AS(0)) であり、よっ
てHi

c(S(0), AS(0)) = 0, (i 6= n+ 1)とHn+1
c (S(0), AS(0)) ∼= Aが成り立つ。以上で (iv)の証明を完了し、問

題 2.20の解答を完了する。

問題 2.21. X を位相空間、(Xn)n∈N を X の閉部分集合の減少列で Xn = X, (n � 0)と ⋂n∈NXn = ∅ を
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満たすものとする。F ∈ D+(X)は k 6= nに対して Hk
Xn\Xn+1

(F ) = 0を満たすとする。完全三角

RΓXn+1\Xn+2
(F )→ RΓXn\Xn+2

(F )→ RΓXn\Xn+1
(F )

+1−−→

のコホモロジーをとって、連結準同型を dn : Hn
Xn\Xn+1

(F ) → Hn+1
Xn+1\Xn+2

(F ) と表す。Kn :==
def

Hn
Xn\Xn+1

(F )と表す。

(i) (K•, d•)は X 上の層の複体であることを示せ。
(ii) k < nに対して Hk

Xn
(F ) = 0であり、さらに Hn

Xn−1
(F )

∼−→ Hn(F )は同型射であることを示せ。
(iii) Gn = ΓXn(F

n) ∩ (dnF )
−1(ΓXn+1(F

n+1)) とおく。射 dnG : Gn → Gn+1 を構成して、G = (G•, d•)が
複体であることを示せ。さらに G→ K と G→ F を構成して、各 Fn が脆弱層である場合に擬同型と
なることを示せ。D+(X)において F ∼= K であることを結論付けよ。

Proof. (i)を示す。明らかに以下の図式が可換である：

0 −−−−→ ΓXn+2\Xn+3
(−) −−−−→ ΓXn\Xn+3

(−) −−−−→ ΓXn\Xn+2
(−)y ∥∥∥ y

0 −−−−→ ΓXn+1\Xn+3
(−) −−−−→ ΓXn\Xn+3

(−) −−−−→ ΓXn\Xn+1
(−).

従って、完全三角の間の射

RΓXn\Xn+3
(−) −−−−→ RΓXn\Xn+2

(−) −−−−→ RΓXn+2\Xn+3
(−)[1] +1−−−−→∥∥∥ y y

RΓXn\Xn+3
(−) −−−−→ RΓXn\Xn+1

(−) −−−−→ RΓXn+1\Xn+3
(−)[1] +1−−−−→

を得る。縦に伸ばして横向きに書けば、完全三角の射

RΓXn\Xn+2
(−) −−−−→ RΓXn\Xn+1

(−) −−−−→ RΓXn+1\Xn+2
(−)[1] +1−−−−→y y ∥∥∥

RΓXn+2\Xn+3
(−)[1] −−−−→ RΓXn+1\Xn+3

(−)[1] −−−−→ RΓXn+1\Xn+2
(−)[1] +1−−−−→

を得る。n次と n+ 1次の周辺でコホモロジーをとれば、可換図式

−−−−→ Hn
Xn\Xn+1

(−) dn−−−−→ Hn+1
Xn+1\Xn+2

(−) −−−−→ Hn+1
Xn\Xn+2

(−) −−−−→y ∥∥∥ y
−−−−→ Hn+1

Xn+1\Xn+3
(−) −−−−→ Hn+1

Xn+1\Xn+2
(−) dn+1

−−−−→ Hn+2
Xn+2\Xn+3

(−) −−−−→

を得る。横向きは完全であるから、dn+1 ◦ dn = 0が従う。以上で (i)の証明を完了する。
(ii)を示す。完全三角

RΓXi+1
(F )→ RΓXi

(F )→ RΓXi\Xi+1
(F )

+1−−→

でコホモロジーをとる。各 k < i に対して Hk
Xi\Xi+1

(F ) ∼= 0 であるので、各 k < i に対して同型射
Hk
Xi+1

(F )
∼−→ Hk

Xi
(F ) を得る。i ≥ n としてこの同型射を繋ぐことによって、各 k < n に対して同型射

Hk
Xi

(F )
∼−→ Hk

Xn
(F ), (i � 0) を得る。x ∈ X を任意にとれば、⋂i∈NXi = ∅ であるので、ある i � 0 が

存在して x ∈ Xi となる。点 xで stalk をとることによって、0 = Hk
Xi

(F )x
∼−→ Hk

Xn
(F )x を得る (Hk

Xi
(F )
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は Xi の上に台を持つ)。Hk
Xn

(F )は任意の点の stalk が 0であるので、Hk
Xn

(F ) = 0が従う。これが示すべ
きことの一つ目である。また、各 k > iに対して Hk

Xi\Xi+1
(F ) ∼= 0であるので、各 k > i + 1に対して同型

射 Hk
Xi+1

(F )
∼−→ Hk

Xi
(F )を得る。k = nとして i ≤ n− 2とすれば、この同型射を繋ぐことにより、同型射

Hn
Xn−1

(F )
∼−→ Hn

Xi
(F ), (i � 0) を得る。Xi = X, (i � 0) であるので、同型射 Hn

Xn−1
(F )

∼−→ Hn(F ) を得
る。これが示すべきことの二つ目である。以上で (ii)の証明を完了する。
(iii)を示す。自然な包含射を in : ΓXn(F

n)→ Fn とおく。Gn の定義より、

Gn
qn−−−−→ ΓXn+1

(Fn+1)

pn
y yin+1

ΓXn
(Fn)

dn◦in−−−−→ Fn+1

は pull-back 図式である。また、pn はモノ射である。さらに、
dn+1 ◦ in+1 ◦ qn = dn+1 ◦ dn ◦ in ◦ pn = 0

であるので、in+1 ◦ qn : Gn → ΓXn+1(F
n+1)と 0-射 Gn → ΓXn+2(F

n+2)は pn+1 ◦ dnG = qn, qn+1 ◦ dnG = 0

となる射 dnG : Gn → Gn+1 を一意的に定義する。このとき、
pn+2 ◦ dn+1

G ◦ dnG = qn+1 ◦ dnG = 0,

qn+2 ◦ dn+1
G ◦ dnG = 0 ◦ dnG = 0

が成り立つ。従って dn+1
G ◦ dnG = 0であり、(G•, d•G)は層の複体である。また、pn ◦ in : Gn → Fn は複体の

射 G→ F を与える。
各 Fn が脆弱層であるとする。このとき任意の局所閉集合 ? ⊂ X に対して RΓ?(F ) ∼= Γ?(F )が成り立つ。

in+1 はモノなので、
ker(dnG) = ker(in+1 ◦ dnG) = ker(dn ◦ pn ◦ in) = ker(dn) ∩ ΓXn

(Fn) = ΓXn
(ker(dn))

が成り立つ。定義より Im(dn−1
G ) = ΓXn

(Fn)∩ Im(dn−1) = ΓXn
(Im(dn−1)) が成り立つ。従って、Hn(G) ∼=

ΓXn(ker(d
n))/ΓXn(Im(dn−1)) であり、さらに

Im(dn−1
G ) −−−−→ Im(dn−1)y y

ker(dnG) −−−−→ ker(dn)

は Cartesian である。よって、item (iii)より、Hn(G)→ Hn(F )は単射である。また、複体の完全列
0→ ΓXn

(F )→ ΓXn−1
(F )→ ΓXn\Xn−1

(F )→ 0

でコホモロジーをとることにより、完全列
Hn
Xn

(F )→ Hn
Xn−1

(F )→ Hn
Xn−1\Xn

(F )

を得る。ここで仮定より、Hn
Xn−1\Xn

(F ) = 0 であり、さらに (ii) より、Hn
Xn−1

(F ) ∼= Hn(F ) であるので、
Hn
Xn

(F )→ Hn(F )は全射である。一方、=(dn−1)) ∼= ΓXn(F
n)× 層の複体の完全列

0→ ΓXn
(F )→ F → ΓX\Xn

(F )→ 0

感想. (iii)は、filtered complex のスペクトル系列の特別な場合。
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3 Poincaré-Verdier duality and Fourier-Sato transformation

問題 3.1. A :==
def Qとする。X :==

def R, B :==
def { 1n |n ∈ N \{0}}, Z :==

def
B ∪ {0} とする。

(1) F :==
def QB とする。D′F と D′D′F を計算しなさい。また、F 6∼= D′D′F であることを示しなさい。

(2) G :==
def QZ とする。Gが soft であること、そして H1

{0}(X,G)が無限次元 Q-線型空間であることを示
しなさい。(Hint: H0(X \ {0}, F ) (もしくは H0(X,G)) はすべての有理数列 (もしくはすべての停留
する有理数列) のなす空間と同型であることを示しなさい)

(3) H2
{0}(X,QX\Z) 6= 0を示しなさい。

注意 3.1.1. 小問 (2) のもとの Hint は、「H0(X,F ) はすべての有理数列のなす空間と同型であることを示し
なさい」であるが、これは偽である。そして問題を解くために本当に必要なのはH0(X \ {0}, F )の方である。

Proof. 小問 (1) を示す。i : B ↪→ X, j : Z ↪→ X をそれぞれ包含射とする。B ⊂ X は局所閉集合なので、
本文 [KS, ToDo: reference] より i! は完全である。従って i!(−) = Ri!(−) である。定義に従って計算す
ると、

D′F = RHomQX
(QB ,QX)

a
= RHomQX

(i!i
−1 QX ,QX)

b
= Ri∗ RHomQB

(i−1 QX , i! QX)
c
= Ri∗i

! RHomQX
(QX ,QX)

d
= Ri∗i

! QX ,

D′D′F = RHomQX
(D′F,QX) = RHomQX

(Ri∗i
! QX ,QX)

となる。ここで a の部分は本文 [KS, 命題 2.5.4]、b の部分は本文 [KS, 3.1.10]、c の部分は本文 [KS, 3.1.13]、
d の部分は HomQX

(QX ,−) ∼= id であることから従う。f を包含射 {0} ↪→ X とする。iは局所閉集合の上へ
の同相なので、i! は完全函手であり (cf. [KS, 命題 2.5.4])、従ってRi! = i! である。このことは、[KS, ] より
f !F = 0であるが、
小問 (2) を解く。まず G が soft であることを示す。まず、q : Y ↪→ Z が位相的閉埋め込みであり、
G ∈ Sh(Y ) が soft であるとき、q∗G も soft であることに注意する。実際、任意の閉部分集合 K ⊂ Z に対
し、q−1(K) = K ∩ Y は閉であり、また自然な射 q−1q∗ → idは函手の自然同型であるので、H0(Z, q∗G) =
H0(Y,G), H0(K, (q∗G)|K) = H0(K ∩ Y,G|K∩Y ) = となるため、G が soft であることから H0(Z, q∗G) →
H0(K, (q∗G)|K) も全射となる。従って、G が soft であるためには、j−1 QX = QZ ∈ Sh(Z) が soft であ
れば十分である。Z の閉集合は 0 ∈ Z を含まなければ開集合でもあるため、そのような閉部分集合への制限
が大域切断の間に同型射を引き起こすことは明らかである。0 ∈ K ⊂ Z を閉集合とすると、任意の開集合
K ⊂ U ⊂ Z に対して Z \U は有限集合であるから開集合であり、従って Z ∼= U t (Z \U)となるので、制限
写像 Γ(Z,QZ)→ Γ(U,QZ)は全射である。Γ(Z,QK)→ Γ(K,QZ |K)はこれらの順極限であるため全射であ
る。以上より Gは soft である。
次に H1

{0}(X,G)が無限次元 Q-線型空間であることを示す。Gは soft であるから、問題 2.5 より、i > 0

に対して Hi(X,G) = 0となる。

RΓ{0}(X,−)→ RΓ(X,−)→ RΓX\{0}(X,−)
+1−−→

は完全三角であるから、よって

H1
{0}(X,G) ∼= coker(H0(X,G)→ H0

X\{0}(X,G))
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∼= coker(H0(X,G)→ H0(Z \ {0}, G|Z\{0}))

∼= coker(H0(Z,QZ)→ H0(B,QB))

となる。ここで H0(Z,QZ)は有限個以降で停留する有理数列のなす Q-線形空間であり、H0(B,QB)は任意
の有理数列のなす Q-線形空間であるから、この cokerは無限次元 Q-線形空間である。以上で小問 (2)の解答
を完了する。
小問 (3) を解く。U− :==

def
(−∞, 0) ⊂ R, U+ :==

def
(0,∞) ⊂ R とする。まず、Mayer–Vietoris 完全列より、

RΓU−∪U+
(X,−) ∼= RΓU−(X,−)⊕RΓU+

(X,−)となる。また、RΓU−(X,−) ∼= RΓ(U−,−), RΓU+
(X,−) ∼=

RΓ(U+,−) であること、U− ∼= R, U+
∼= R であること、また U−, U+ ⊂ R への制限射 RΓ(X,QX) →

RΓ(U∗,QX)が同型であることに注意して、完全三角

RΓ{0}(X,−)→ RΓ(X,−)→ RΓX\{0}(X,−)
+1−−→

に QX を代入すると、Hi(X,QX) → Hi
X\{0}(X,QX) が単射であること、そして H1

{0}(X,QX) ∼=
coker(H0(X,QX)→ H0

X\{0}(X,QX)) ∼= Qが従う。よって
0→ QX\Z → QX → QZ → 0

にRΓ{0}(X,−)を適用すると、

H2
{0}(X,QX\Z) ∼= coker(Q→ H1

{0}(X,G))

となるが、小問 (2)よりこれは無限次元である。以上で問題 3.1の解答を完了する。

問題 3.2. Rn の c-soft 次元は n であり、さらに脆弱次元は n+ 1 であることを示しなさい。

注意 3.2.1. 問題 3.2 のもと問題では soft 次元が n であることを示す問題だったが、soft 次元は本文中で未
定義であるため、ここはおそらく c-soft 次元のことであると思われる。

Proof. まず本文 [KS, 補題 3.2.1] より Rn の c-soft 次元は n 以下であることがわかる。次に 問題 2.9 (iii)

より、Rn の脆弱次元は n+1 以下であることがわかる。そして 問題 2.20 (iv) より、Rn の脆弱次元は n+1

以上であることがわかる。以上で Rn の脆弱次元は n+ 1 となる。そして Rn の脆弱次元が n+ 1 であるこ
とがわかれば、再び 問題 2.9 (iii) によって、Rn の c-soft 次元が n 以上であることがわかるので、よって Rn

の c-soft 次元は n である。以上で 問題 3.2 の解答を完了する。

注意. Rn の c-soft 次元が n 以上であることを帰納的に示すこともできる：まず 問題 3.1 (3) と 問題 2.9 (iii)

より、R1 の c-soft 次元は 1 以上である。しかし、本文 [KS, 補題 3.2.1] より、R1 の c-soft 次元は 1 以下で
あるから、以上より R1 の c-soft 次元は 1 であることが従う。次に、ある n ≥ 2が存在して、任意の k < n

に対して Rk の c-soft 次元が k 以上であると仮定する。このとき、問題 2.9 (ii)の証明中の (iii)より、ある
F ∈ Sh(Rn−1)とある開集合 U ⊂ Rn−1 が存在して、Hn−1

c (U,F|U ) 6= 0が成り立つ。H1
c (R,QR) = Q であ

るから、Künneth の公式 (cf. 問題 2.18 (ii)) よりHn
c (U × R,F|U×R) ∼= Hn−1

c (U,F|U )⊗Q H
1
c (R,QR) 6= 0

であり、従って Rn の c-soft 次元は n 以上である。以上より、n に関する帰納法で Rn の c-soft 次元は n 以
上であることが従う。

問題 3.3. X を位相空間、F ∈ Sh(X) を X 上のアーベル群の層であって、局所的に ZX と同型なものとす
る。このとき、次が成り立つことを示しなさい：

F ⊗ F ∼= ZX ,D′F ∼= F.
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Proof.
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