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このノートでは、[Ha, 演習 V.2.5]に解答を与える。基礎体 k は代数閉体であるとする。

Definition 0.1. C を (滑らかで射影的な) 曲線とする。

• K を C の標準因子とする。これは直線束 ΩC に対応する因子であり、線形同値を除いて一意的に定
まる。

• E を C 上の局所自由層とする。E が分解可能であるとは、E ∼= E1 ⊕ E2 となる 0でない局所自由層
E1, E2 が存在することを言う。E が分解不可能であるとは、E が分解可能でないことを言う。

• E を C 上のランク 2の局所自由層とする。E が正規化されているとは、E が OC と同型な部分直線束
Lを持ち、さらにその Lが E の次数最大の部分直線束であることを言う (E が OC と同型でない次数
0の部分直線束を持つ可能性は排除していない)。L ⊂ E を E に含まれる直線束であって、その次数が
最大となるものとすると、L ⊂ L′ ⊂ E となる直線束 L′ は存在しない。従って、E/Lは直線束となる。
さらにこのとき、E ⊗ L∨ は正規化されていることに注意しておく。すなわち、どのようなランク 2の
局所自由層も、適切に直線束を選択して捻ることで、いつでも正規化することができる。
E が正規化されていて単射 i : OC → E が与えられているとする。このとき coker(i) のねじれ部分
の E での逆像は、Im(i)を真に含む E の部分直線束である。E が正規化されていることから、これは
Im(i)に他ならない。従って coker(i)は直線束となる。

• 曲面 X が C 上の線織曲面であるとは、射 X → C と C 上のランク 2の局所自由層 E があって、C 上
で X ∼= PC(E)となることを言う。Lを任意の直線束とするとき、C 上で PC(E) ∼= PC(E ⊗ L)とな
る。従って、E を正規化されているように選択することが可能である。

• 次の事実に注意しておく ([Ha, 演習 II.7.9], [Ha, 演習 III.12.5], [Ha, 命題 V.2.2], [Ha, 命題 V.2.3],

[Ha, 命題 V.2.8] なども参照)：二つの (同じランクの) 局所自由層 E,E′ について、C 上で同型
f : PC(E)

∼−→ PC(E
′) が存在すれば、ある直線束 L が存在して、E ⊗ L ∼= E′ となる。なぜなら、

p : PC(E) → C, p′ : PC(E
′) → C をそれぞれ射影とすると、p = p′ ◦ f であり、従って直線束

f∗OPC(E′)/C(1)の Pic(PC(E)/C) :
def
= Pic(PC(E))/p∗ Pic(C) ∼= Z における剰余類はこの巡回群の生

成元を与え、それは OPC(E)/C(1) の剰余類と等しい。このことは、ある C 上の直線束 L が存在し、
OPC(E)/C(1) ∼= p∗L ⊗ f∗OPC(E′)/C(1) となることを示している。pで pushして射影公式を適用する
ことで、E ∼= L⊗ E′ を得る。
さて、X ∼= PC(E) が線織曲面であるとし、E を正規化されているように選んでおく。別の正規化さ
れた E′ により X ∼= PC(E

′) が成立するなら、C 上のある直線束 L が存在して E ∼= E′ ⊗ L となる。
E,E′はともに正規化されているので、それぞれOC と同型な部分直線束を持ち、さらにそれらは E,E′

の次数最大の部分直線束である。従って、このような Lは次数が 0でなければならない (正規化されて
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いる E のうちでもまだ選択の自由は残されている)。よって、等式

deg(det(E)) = deg(det(E′ ⊗ L)) = deg(det(E′)⊗ L⊗2) = deg(det(E′))

が成立する。このことは、X ∼= PC(E)と表した際に、E をどのように選択しても、それが正規化され
ていれば、deg(det(E))は不変であることを示している。すなわち、この量は線織曲面 C の不変量であ
る。この不変量を e :

def
= − deg(det(E))と表す。

このノートで解答を与えるのは、以下の演習問題である：

Exercise ([Ha, 演習 V.2.5]). C を種数 g ≥ 1の曲線とする。

(i) 各 0 ≤ e ≤ 2g − 2に対して、不変量 eを持つ C 上の線織曲面 X であって分解不可能な E に対応する
ものがあることを示せ。

(ii) e < 0として、D を次数 d :
def
= −eの任意の因子とし、ξ ∈ H1(C,OC(−D))を 0でない元、これの定

める拡大を
0 −−−−→ OC −−−−→ E −−−−→ OC(D) −−−−→ 0

とする。Serre 双対によって ξ は (0 でない) 線形写像 H0(C,OC(D + K)) → k と見做せて、余
次元 1 の部分空間 H :

def
= ker(ξ) ⊂ H0(C,OC(D + K)) を得る。次数 d − 1 の有効因子 D′ に対

して自然に定まる包含射 OC(−D′) ⊂ OC を OC(D + K) で捻って大域切断をとることにより
LD′ :

def
= Im(H0(C,OC(D +K −D′)) → H0(C,OC(D +K))) と定義する。

E が正規化されているのは、どのような次数 d − 1の有効因子 D′ に対しても LD′ ̸⊂ H となるとき、
またそのときに限ることを示せ。

(iii) ここで −g ≤ e < 0ならば、C 上の線織曲面 X であって不変量が eであるようなものが存在すること
を示せ。

(iv) g = 2について、e ≥ −2は X の存在のための必要条件でもあることを示せ。

[Ha, 演習 V.2.5]では、注として、任意の線織曲面 X に対して e ≥ −g である (Nagataの結果) ことが記
述されている。このノートでは (iv)よりも一般的な事実である Nagataの結果に証明を与えることで (iv)に
解答を与える。

1 解答
この節では (i)と (ii)に解答を与える。

(i)の解答. 0 ≤ e ≤ 2g − 2とし、D を次数 eの有効因子で、K −D もまた有効因子となるものとする。そ
のような D は e ≤ 2g − 2 であることから必ず存在する。K − D が有効因子であることから、0 でない元
ξ ∈ H1(C,OC(D)) ∼= H0(C,OC(K −D))∨ が存在する。ξ の定める拡大

0 −−−−→ OC −−−−→ E −−−−→ OC(−D) −−−−→ 0

によってランク 2の局所自由層 E を定義すると、ξ ̸= 0であることから E は分解不可能である。もし E が次
数 1以上の部分直線束 L ⊂ E を持つならば、合成射 L ⊂ E → OC(−D)は deg(−D) ≤ 0であることから 0-

射でなければならない。従って、L ⊂ ker(E → OC(−D)) = OC であることがわかるので、これは Lの次数
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が 1以上であることと矛盾する。よって E は次数 1以上の部分直線束を持たない。このことは E が正規化さ
れていることを示している。従って、線織曲面 X の不変量は − deg(det(E))として計算され、上の完全列か
らこれは eに他ならない。以上で (i)の解答を完了する。

(ii)の解答. E が正規化されているとする。D′ を次数 d− 1の有効因子とする。D′ によって包含射 OC
D′

−−→
OC(D

′)が定まり、以下のように二つの完全列の間の射を得る：

0 −−−−→ OC(−D) −−−−→ E ⊗OC(−D) −−−−→ OC −−−−→ 0y y yD′

0 −−−−→ OC(D
′ −D) −−−−→ E ⊗OC(D

′ −D) −−−−→ OC(D
′) −−−−→ 0.

コホモロジーをとって、連結準同型の部分を観察する：

H0(OC)
1 7→ξ−−−−→ H1(OC(−D))

D′

y yf

H0(E ⊗OC(D
′ −D)) −−−−→ H0(OC(D

′))
γ−−−−→ H1(OC(D

′ −D))

deg(D′ −D) = −1であることと E が正規化されていることから、E ⊗OC(D
′ −D)の部分直線束の次数の

最大値は −1である。このことは H0(E ⊗OC(D
′ −D)) = 0であることを示している。従って γ は単射であ

り、f(ξ) ̸= 0である。Serre双対を取ることで LD′ ̸⊂ H となることがわかる。
逆に E が正規化されていないと仮定する。このとき、E は次数 1の部分直線束 L ⊂ E を含む。L ⊂ E であ
るから、H0(E⊗L∨) ̸= 0であり、deg(L) ≥ 1であるから、H0(L∨) = 0である。従って、射H0(E⊗L∨) →
H0(OC(D) ⊗ L∨) の像は 0 ではない。像から大域切断をとって次数 deg(D) − deg(L) = d − 1 の有効因子
D′ を定める。すると、先ほどと同様の図式

H0(OC)
1 7→ξ−−−−→ H1(OC(−D))

D′

y yf

H0(E ⊗OC(D
′ −D)) −−−−→ H0(OC(D

′))
γ−−−−→ H1(OC(D

′ −D))

において f(ξ) = 0となることがわかる。Serre双対をとることで、このことは LD′ ⊂ H であることを示して
いる。以上で (ii)の解答を完了する。

(iii)の解答. Dを次数 dの因子とする。OC(D)の OC による拡大で定まるランク 2の局所自由層のうち、正
規化されたものが存在することを証明すれば良い。すなわち、正規化されたランク 2の局所自由層を定めるよ
うな元 ξ ∈ H1(OC(−D))が存在することを示せば良い。V :

def
= H1(OC(−D))と置く。Riemann-Rochの定

理により、dim(V ) = l(K +D) = d+ g − 1であることに注意する。
Divd−1 :

def
= Cd−1/Sd−1 を C の次数 d− 1の有効因子のなす多様体とする (Sd−1 は d− 1次対称群である)。

Divd−1の各閉点はCの次数 d−1の有効因子と対応している。p : C×Divd−1 → Divd−1, q : C×Divd−1 → C

を射影とし、閉部分スキーム U ⊂ C × Divd−1 を普遍的な Divd−1 上の因子とする。すなわち、閉点
[D′] ∈ Divd−1 (D′ は C の次数 d − 1の有効因子) における fiberで U[D′] ⊂ C は有効因子 D′ を与える。U

に対応する直線束を L とし、因子 U を定める単射 ODivd−1 → L を一つとる。すると、C × Divd−1 上の完
全列

0 −−−−→ q∗OC(−D) −−−−→ L⊗ q∗OC(−D) −−−−→ (L⊗ q∗OC(−D))⊗OU −−−−→ 0
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を得る。pでコホモロジーをとることで、完全列

R1p∗(q
∗OC(−D))

f−−−−→ R1p∗(L⊗ q∗OC(−D)) −−−−→ R1p∗((L⊗ q∗OC(−D))⊗OU )

を得るが、合成射 U ⊂ C×Divd−1 p−→ Divd−1 はアフィン射なので、R1p∗((L⊗ q∗OC(−D))⊗OU ) = 0であ
り、射 f : R1p∗(q

∗OC(−D)) → R1p∗(L⊗ q∗OC(−D))は全射である。また、平坦基底変換により、自然な同
型R1p∗(q

∗OC(−D)) ∼= VDivd−1 を得る。F :
def
= R1p∗(L⊗q∗OC(−D))と置く。以上で全射 f : VDivd−1 → F

を得た。さらに、各点 [D′] ∈ Divd−1 について、Riemann-Roch の定理より dimH1(C,OC(D
′ − D)) = g

(一定) であるから、Grauertの定理 ([Ha, 演習 III.12.9]) より F はランク g の局所自由層である。
K :

def
= ker(f)と置けば、K はランク d − 1の局所自由層である。全射 V ∨

Divd−1 → K∨ により引き起こされ
る射影束の間の射を考える：

PDivd−1(K∨)
⊂−−−−→ PDivd−1(V ∨

Divd−1) = Divd−1 ×Pk(V
∨)

proj.−−−−→ Pk(V
∨).

PDivd−1(K∨)は 2d− 3次元の多様体であり、Pk(V
∨)は d+ g − 2次元の多様体であるから、d ≤ g であれば

上の射の列の合成で定まる射は全射ではない。従って像に含まれない閉点を与える元 ξ ∈ V が存在し、(ii)と
[ゆ, Section 1]で行われている議論より、この ξ が所望の元であることがわかる。以上で (iii)の解答を完了す
る。

(iv)の解答. 正規化されたランク 2の局所自由層 E に対して e = − deg(det(E)) ≥ −g であることを証明す
れば良い。−g > eと仮定して矛盾を導く。
単射 OC → E をとって余核を L とすれば、L は次数 d :

def
= −e > g の直線束であり、E は (0 でない) 元

ξ ∈ V :
def
= H1(L∨)を定める。(iii)と同様にしてDivd−1 上に全射 f : VDivd−1 → F :

def
= R1p∗(L⊗ q∗L∨)を構

成すると、F はランク gの局所自由層である。従って、全射 f はグラスマン多様体への射 φ : Divd−1 → Gg(V )

を引き起こす。各点 [D′] ∈ Divd−1 へ f を pull-back して得られる全射は H1(OC(−D)) → H1(OC(D
′ −

D)) であり、これは Serre 双対により単射 H0(OC(K − D′ + D)) → H0(OC(K + D)) と対応するが、
coker(H0(OC(K − D′ + D)) → H0(OC(K + D))) ∼= H0(OD′) であることから、有効因子 D′ が異な
れば単射 H0(OC(K − D′ + D)) → H0(OC(K + D)) が異なり、従って各 D′ はそれぞれが異なる全射
H1(OC(−D)) → H1(OC(D

′ −D))を引き起こしていることがわかる。このことは φが単射であることを意
味していて、従って dim Im(φ) = dとなる。
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