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このノートでは、[Ha, 演習 I.4.9]に幾何的な解答を与え、いくつかの関連する結果について証明する。基
礎体 k は代数閉体であるとする。

Exercise ([Ha, 演習 I.4.9]). X ⊂ PN を r 次元の部分多様体とし、N ≥ r + 2とする。P ̸∈ X と線形部分
空間 PN−1 ⊂ PN を適当にとるとき、点 P から PN−1 への射影は X から像 X ′ ⊂ PN−1 への双有理射を引き
起こすことを証明せよ。

1 定義や記号について
まずこのノートで用いる記号について説明しておく。

Notations. 体 k は代数閉体とする。

• 線形空間 V や代数多様体 X 上の局所自由層 E に対し、V ∨ や E∨ などでその双対を表す。
• 線形空間 V や代数多様体 X 上の局所自由層 E に対し、P(V ) :

def
= Proj(Sym(V )),PX(E) :

def
=

ProjX(Sym(E))と置く。V の 0でない元 v ∈ V は全射 V ∨ → k · v∨ を定め、この全射が P(V ∨)の点
を一意的に定める。逆に P(V ∨)の点は V の 0でない元を定数倍を除いて定める。

• 線形空間 V に対し、G(V, r)で次元 rの線形空間への全射 V → W の同値類 (核が等しいときに同値と
定める) を閉点とするグラスマン多様体を表す。特に、G(V, 2)は P(V )内の直線を閉点とする多様体
である。同じく、代数多様体 X 上の局所自由層 E に対し、GX(E, r)でグラスマン束を表す。

• 代数多様体 X に対し、Hilbn(X) で X 上の二点のなす Hilbert スキームを表す。Hilbn(X) の閉点は
X の長さ nの閉部分スキームと 1:1に対応する。

2 平面と多様体の交差について
この演習問題を証明するために、X と PN 内の線形部分多様体がどれくらい・どのように交わるかについて
調べておく。なお、以下の Lemma 2.1 (ii)はこのノートでは用いないが、全く同じ方法でわかることなので
記述しておく。

Lemma 2.1. V を次元 r + 1の線形空間、0 < s < r を整数とする。

(i) X ⊂ P(V )を次元 d < r− sの閉部分多様体とする。このとき、X と交わらない P(V )内の次元 sの平
面は G(V, s+ 1)の開集合をなす。
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(ii) X ⊂ P(V ) を次元 d = r − s の閉部分多様体とする。このとき、X と高々有限個の点でのみ交わる
P(V )内の次元 sの平面は G(V, s+ 1)の開集合をなす。

証明. まずはグラスマン多様体 G(V, s + 1)によってパラメタライズされた P(V )内の次元 sの平面の族につ
いて調べる。G(V, s+ 1)上のトートロジカルな全射を VG(V,s+1) → U と置く。ここで U はランク s+ 1の局
所自由層である。この全射が引き起こす閉埋め込み

PG(V,s+1)(U) ⊂ G(V, s+ 1)× P(V )

を P(V )側から調べる。各点 p ∈ P(V )上の PG(V,s+1)(U)の fiber PG(V,s+1)(U)|p ⊂ G(V, s+ 1)は点 pを通
る次元 sの平面を閉点とする多様体である：

PG(V,s+1)(U)

PG(V,s+1)(U)|p

G(V, s+ 1)× P(V )

G(V, s+ 1)

P(V )

∗.

p

⊂ proj.

⊂

点 pを与える全射も同じ記号 p : V → k で表す。P(V )内の次元 sの平面は次元 s+ 1の線形空間W への全
射 V → W と対応し、その平面が点 p を通ることは、全射 V → W の核が ker(p) に含まれることを意味す
る。従って、点 pを通る次元 sの平面は、次元 sの線形空間W ′ への全射 ker(p) → W ′ と対応する：

0 −−−−→ ker(p) −−−−→ V
p−−−−→ k −−−−→ 0y y ∥∥∥

0 −−−−→ W ′ −−−−→ W −−−−→ k −−−−→ 0

p : V → k は P(V ) 上のトートロジカルな全射 VP(V ) → OP(V )(1) の点 p への pull-back であり、従って
ker(p)は ΩP(V )(1)の点 pへの pull-backであることに注意する (cf. [ゆ, Remark 4])。以上より、P(V )上の
多様体の同型

PG(V,s+1)(U) ∼= GP(V )(ΩP(V )(1), s)

が得られる。
Lemma 2.1の証明を完了するため、PG(V,s+1)(U) ⊂ G(V, s + 1) × P(V ) と G(V, s + 1) × X の交差を考
える。Y :

def
= PG(V,s+1)(U) ∩ (G(V, s + 1) × X) と置く (スキーム論的交差)。射影 Y → X はグラスマン束

GP(V )(ΩP(V )(1), s) → P(V )の X への引き戻しであるから、Y ∼= GX(ΩP(V )(1)|X , s)である。従って

dimY = d+ s(r − s) = rs− s2 + d

となることがわかる。射影 f : Y → G(V, s+1)の像 Im(f)は、ちょうどX と交わる s次元の平面H ⊂ P(V )

を閉点とする G(V, s + 1)の閉部分多様体であり、さらに各点 [H] ∈ Im(f)での f の fiberは H ∩X と同型
である。

Y −−−−→ G(V, s+ 1)x x
H ∩X −−−−→ [H].

dim(G(V, s + 1)) = (r − s)(s + 1) = rs − s2 + r − sであることに注意する。(i)を示す。d < r − sなの
で、dimY < dim(G(V, s+ 1))であり、特に、射影 f : Y → G(V, s+ 1)の像は真の閉部分集合である。この
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ことは (i)を示している。(ii)を示す。d+ s = rなのでX と次元 sの任意の平面 ⊂ P(V )が交わることから、
射影 f : Y → G(V, s+ 1)は全射である。一方、dimY = rs− s2 + d = rs− s2 + r − s = dim(G(V, s+ 1))

であるから、f は生成点で有限である。すなわち、G(V, s + 1)のある開集合上で f の fiber は有限集合とな
る。このことは (ii)を示している。以上で Lemma 2.1の証明を完了する。

Lemma 2.1 (i)をより詳しく調べる。

Lemma 2.2. V を次元 r + 1の線形空間、0 < s < r を整数、X ⊂ P(V )を次元 d < r − sの閉部分多様体
とする。このとき、X と交わる P(V )内の次元 sの平面のうちほとんどは X と一点で交わる。

証明. 2 点以上で交わる次元 s の平面の集合を調べる。Hilb2(X) を X 上の 2 点の Hilbert スキーム、
U ⊂ Hilb2(X) × X を普遍的な閉部分スキーム、つまり長さ 2 の閉部分スキーム Z ⊂ X に対応する点
[Z] ∈ Hilb2(X)上で

U

U|[Z]
∼= Z

Hilb2(X)×X

X

Hilb2(X)

∗

[Z]

⊂ p

⊂

となる閉部分スキームとする。ただし p : Hilb2(X) × X → Hilb2(X) は射影である。特に合成 U ⊂
Hilb2(X) ×X

p−→ Hilb2(X)は有限平坦射でランク 2である。閉埋め込み X ⊂ P(V )を与える全射 VX → L

を Hilb2(X)×X 上へ pull-backすれば、射の列

VHilb2(X)×X → LHilb2(X)×X → LU

を得る。これを射影 pで Hilb2(X)上へ pushすれば、ランク 2の局所自由層への射

Ψ : VHilb2(X) → p∗(LU )

を得る。VX → L が閉埋め込みを与えることから (各 Hilb2(X) の閉点の上に基底変換して確かめることで)

射 Ψが全射であることがわかる。
各長さ 2 の閉部分スキーム Z ⊂ X に対し、全射 ΨZ : V → LZ が P(V ) 内の直線を定める。全射

V → W がこの直線を含む次元 s の平面 ⊂ P(V ) を定めるとする。このとき次元 s − 1 の線形空間への全射
ker(ΨZ) → W ′ が引き起こされる：

0 −−−−→ ker(ΨZ) −−−−→ V
ΨZ−−−−→ LZ −−−−→ 0y y ∥∥∥

0 −−−−→ W ′ −−−−→ W −−−−→ LZ −−−−→ 0.

逆に次元 s − 1 の線形空間への全射 ker(ΨZ) → W ′ は包含射 ker(ΨZ) ⊂ V で push-out をとることで
次元 s + 1 の線形空間への全射 V → W を引き起こし、これらは 1:1 に対応する。Hilb2(X) 上の包含射
ker(Ψ) ⊂ VHilb2(X) はグラスマン束の間の閉埋め込み

GHilb2(X)(ker(Ψ), s− 1) ⊂ G(V, s+ 1)×Hilb2(X)
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を引き起こすが、以上の議論により、各閉点 [Z] ∈ Hilb2(X)の fiberは

GHilb2(X)(ker(Ψ), s− 1)

G(ker(ΨZ), s− 1)

G(V, s+ 1)×Hilb2(X)

G(V, s+ 1)

Hilb2(X)

∗

[Z]

⊂ p

⊂

となり、すなわち、P(V )内の次元 sの平面のうち Z の定める P(V )内の直線を通るものたちをパラメタライ
ズする多様体が現れる。従って、射影 g : GHilb2(X)(ker(Ψ), s − 1) → G(V, s + 1)の像はちょうど X と二点
以上で交わる次元 sの平面たちからなる多様体である。特に、射影 f : GX(ΩP(V )(1)|X , s) → G(V, s+ 1)の
像に含まれる (f については Lemma 2.1の証明中を参照)。
X ⊂ P(V ) を超平面で d 回切ったのちできる 0 次元スキームのある点を選び、その点を通るように
異なる超平面をいくつか選ぶことで、f のある fiber が 0 次元であることがわかる。従って fiber の次
元の上半連続性 (cf. [Ha, Exercise II.3.22]) より f は generically finite であることがわかる。従って
dim(Im(f)) = dim(GX(ΩP(V )(1)|X , s))である。また、

dim(GHilb2(X)(ker(Ψ), s− 1)) = 2d+ (s− 1)((r + 1− 2)− (s− 1)) = 2d+ (s− 1)(r − s)

< d+ s(r − s) = dim(GX(ΩP(V )(1)|X , s)) = dim(Im(f))

であるから、Im(g)は Im(f)の真の閉部分集合となる。このことは X と交わる次元 sの平面のうちほとんど
は X と 1点で交わるということを示している。以上で Lemma 2.2の証明を完了する。

3 証明
この節では、冒頭の問題 [Ha, 演習 I.4.9]を少し一般的な形で証明する。

Proposition 3.1. X ⊂ PN を r次元の部分多様体、sをN ≥ r+ s+2となる自然数とする。次を満たす線
形部分多様体 Ps ⊂ PN を閉点に持つ G(N + 1, s+ 1)の部分空間はある稠密開集合を含む：

• Ps ⊂ PN は X ⊂ PN と交わらず、Ps に沿った射影 PN 99K PN−s は X から像 X ′ ⊂ PN−s への双有
理射を引き起こす。

証明. V = H0(PN ,OPN (1)) と置き、PN = P(V ) と書く。G(V, s + 1) 上のトートロジカルな全射を
VG(V,s+1) → U と置き、その核を K とする。閉埋め込み PG(V,s+1)(U) ⊂ G(V, s + 1) × P(V ) に沿った
爆発を B と置くと、[ゆ, Corollary 9]より B は R :

def
= PG(V,s+1)(K)上の Ps+1-束であり、R上の Ps+1-束の

構造は、
0 −−−−→ KR −−−−→ VR −−−−→ UR −−−−→ 0y y ∥∥∥
0 −−−−→ OR/G(V,s+1)(1) −−−−→ E −−−−→ UR −−−−→ 0

という完全列の間の射ができるようなランク s + 2 の R 上の局所自由層 E により B ∼= PR(E) で与えられ
ている。全射 VR → E はグラスマン多様体への射 q : PG(V,s+1)(K) → G(V, s + 2) を引き起こすことに注
意する。G(V, s + 1) × P(V ) における PG(V,s+1)(U) と G(V, s + 1) × X のスキーム論的交差を D と置き、
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G(V, s+ 1)×X の D に沿った爆発を BX と置く。以下の図式ができる (以下のように射に名前をつける)：

BX

G(V, s+ 1)×X

B

G(V, s+ 1)× P(V )

R

G(V, s+ 1)

G(V, s+ 2)
Ps+1-束

σ

proj.

π p

q

閉点 x ∈ PG(V,s+1)(K)は p, q での像をとることで p(x) ∈ G(V, s + 1)に対応する P(V )の s次元平面 Hp(x)

と q(x) ∈ G(V, s+ 2)に対応する P(V )の s+ 1次元平面 Hq(x) を定め、Hp(x) ⊂ Hq(x) となる。さらに σ で
の xの fiber σ−1(x)の π での像は、ちょうど Hq(x) となる、つまり π(σ−1(x)) = Hq(x) である。
Z ⊂ G(V, s + 2) を X と交わる s + 1 次元平面のなす閉部分集合とする。各 s 次元平面 H ⊂ P(V )

に対して、H に含まれない X の点が存在しないならば、X ⊂ H であるから、点 [H] ∈ G(V, s + 1) の
fiber p−1([H]) と q−1(Z) は明らかに交わり、H に含まれない X の点が存在するならば、その点をとるこ
とで構成される新たな s + 1 次元平面 H ′ の定める R の点は q−1(Z) と p−1([H]) のどちらにも含まれる。
従って射 p|q−1(Z) : q−1(Z) → G(V, s + 1) は全射である。N ≥ r + s + 2 であるから、Lemma 2.2より、
X とちょうど 1 点で交わる s + 1 次元平面からなる稠密開集合 V ⊂ Z がある。V ⊂ Z は稠密であり、
p|q−1(Z) : q

−1(Z) → G(V, s+1)は全射であるから、p(q−1(V )) ⊂ G(V, s+1)は稠密な構成可能集合であり、
特に開である。
N ≥ r + s + 2 であるから、Lemma 2.1より、X と交わらない s 次元平面のなす空でない開集合 U ⊂

G(V, s + 1)がある。各点 [H] ∈ U に対し、H を軸とする射影 P(V ) 99K P(K[H]) ∼= PN−s を X に制限した
ものは (H がX と交わらないことから) G(V, s+ 1)上の二つの射 BX → B → Rの合成射 r : BX → Rの点
[H]での fiberに他ならない。点 x ∈ Rについて

x ∈ Im(r : BX → R)

⇐⇒ π(σ−1) ∩X ̸= ∅
⇐⇒ X と q(x)に対応する P(V )の s+ 1次元平面が交わる
⇐⇒ x ∈ q−1(Z)

であるから、Im(r) = q−1(Z)となる。点 x ∈ q−1(V )の r : BX → Rでの fiberはちょうど X と q(x)に対
応する P(V )の s + 1次元平面のスキーム論的交差であり、すなわちスキーム論的に 1点である。従って、r

は空でない開集合 r−1(q−1(V )) ⊂ BX 上で同型射である。
W :

def
= p(q−1(V )) ∩ U ⊂ G(V, s+ 1)と置く。各点 [H] ∈ W に対して、p−1([H]) ∩ q−1(V ) ̸= ∅であるか

らH を軸とする射影 rH : X → P(K[H]) ∼= PN−s は像への双有理射である。また、W ⊂ U であるから、s次
元平面 H は X とは交わらない。よってW は所望の開集合である。以上で証明を完了する。
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