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このノートでは、[Ha, 演習 IV.4.6]に解答を与える。基礎体 k は代数閉体であるとする。

Definition 0.1.

• X ⊂ P2 を曲線とする。正則点 p ∈ X がX の変曲点 (inflection point) であるとは、接線 Tp(X)がX

と重複度 3以上で接することを言う。
• X ⊂ Pn を滑らかで非退化 (どんな超平面にも含まれない) 曲線、H ⊂ Pn を超平面、p ∈ X を点とす
る。H がX と点 pで重複度 n以上で接するとき、H を pにおける接触超平面 (osculating hyperplane

at p) と言う。H がさらに点 p で重複度 n + 1 以上で接するとき、H を点 p における超接触超平面
(hyperosculating hyperplane) と言い、点 p における超接触超平面が存在するとき、点 p を超接触点
(hyperosculating point) と言う。

Exercise ([Ha, 演習 IV.4.6]).

(i) X ⊂ P2 を種数 g 次数 dの射影曲線で r 個の nodeを持ち、それ以外で正則であるとする。このとき、
X の変曲点は (適切に数えて) 6(g − 1) + 3d個であることを示せ (Tp(X)が X と r + 2重に接すると
き、変曲点 pは r 回数えるべきである)。ただし nodeは変曲点には数えない。

(ii) X ⊂ Pn を種数 g 次数 dの非特異射影曲線とする。このとき、次を示せ：
(a) 任意の点 p ∈ X に対して、点 pにおける接触超平面が存在する。
(b) X の超接触点は (適切に数えて) n(n+ 1)(g − 1) + (n+ 1)d個ある。

(iii) X を楕円曲線、d ≥ 3 を自然数とする。標数 0 であるとせよ。このとき X はちょうど d2 個の位数 d

の点を持つ。

最初に(b)から(iii)が従うことを示しておく。

Proof. P0 を原点とする。V :
def
= H0(X,OX(dP0))とおけば、d ≥ 3なので、V は非常に豊富な次元 d− 1の

線形系となり、閉埋め込みX → P(V ) ∼= Pd−1 を得る。またX の P(V )内での超平面切断の次数は dである。
点 P がX の P(V )内での超接触点であれば、点 P での接触超平面は点 P と重複度 > d− 1で交わるので、
点 P での接触超平面による X の超平面切断は dP であり、よって dP ∼ dP0 となって P は位数 d となる。
逆に dP ∼ dP0 であれば、dP は X の P(V )内での超平面切断として得られて、X の次数が dであることか
ら P は超接触点となる。
こうしてX の位数 dの点は、因子 dP0 による射影空間への閉埋め込みX ⊂ P(V )のもとでの超接触点と同
じ点である。ここでXの超接触点の数は(b)より適切に数えることで (d−1)(d−1+1)(1−1)+(d−1+1)d = d2

個ある。よって X の位数 dの点はちょうど d2 個ある。
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次に、接触超平面について調べる。

Setting. V :
def
= H0(Pn,OPn(1)) と置く。dimV = n + 1 である。X ⊂ Pn = P(V ) は VX → L :

def
=

OP(V )(1)|X により得られる埋め込みであり、X がどの超平面 Pn−1 にも含まれないことは V → H0(X,L)

が単射であることを意味する。X は滑らかとも射影的とも限らないとしておく。
スキームの射 f : T → S と S 上の対象 F (S-スキームや、S 上のスキームの射や、S 上の準連接層など) に
対し、FT や F |T や f∗F で F の射 T → S による基底変換を表す。

∆ ⊂ X ×k X を対角、I をそのイデアル層、p1, p2 : X ×k X → X を射影とする。X 上の連接層 F に対
して、

Pn(F ) :
def
= p2,∗(p

∗
1F ⊗OX×kX /In+1)

と置く。X ×k X 上の全射 p∗1F → p∗1F ⊗OX×kX /In+1 が射 p2,∗p
∗
1F → Pn(F )を引き起こすが、平坦基底

変換により p2,∗p
∗
1F

∼= H0(X,F )|X なので射

H0(X,F )|X → Pn(F )

を得る。また、X 上では完全列

0 −−−−→ In/In+1 ⊗ F −−−−→ Pn(F ) −−−−→ Pn−1(F ) −−−−→ 0

ができる。特に X が滑らかな場合は In/In+1 ∼= Symn(ΩX)である。
X(n) を In+1 で定まるX ×k X の閉部分スキームとする。点 p ∈ X を取り、この点を与える射を同じ記号

p : Spec(k) → X で表す。図式

Spec(OX,p /m
n+1
X,p )

pn

−−−−→ X(n)

inp

y yin

p−1
2 (p)

pX−−−−→ X ×k X
p1−−−−→ Xy yp2

y
Spec(k)

p−−−−→ X −−−−→ Spec(k)

の各四角形はそれぞれ pull-backの図式である。X 上の連接層 F に対し、X ×k X 上の射 p∗1F → in∗ i
n,∗p∗1F

を pX で基底変換することを考える。pX , in はともに閉埋め込みであるため、自然な射

F ∼= p∗Xp∗1F → p∗X in∗ i
n,∗p∗1F

∼= inp,∗p
n,∗in,∗p∗1F

を得る。ここで p1 ◦ in ◦ pn = inp ,であることから、自然な射

F → inp,∗i
n,∗
p F

を得る。この射は X 上で F に全射 OX → OX,p /m
n+1
X,p をテンソルして得られる射に他ならない。従って、

射 H0(X,F )|X → Pn(F )を各点 p ∈ X へ基底変換して得られる射

H0(X,F ) → Pn(F )⊗ k(p) ∼= Fp/m
n+1
X,p Fp

は、stalkをとる射 H0(X,F ) → Fp と剰余をとる射 Fp → Fp/m
n+1
X,p Fp の合成に他ならない。
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X を曲線、X → P(V )を射、L :
def
= OP(V )(1)|X と置き、X → P(V )に対応する全射 VX → Lを一つとる。

X → P(V )は不分岐であるとする。すなわち、VX → P1(L)は全射である (cf. [ゆ sep])。元 s ∈ V が s = 0

で定める P(V )の超平面が X と点 p ∈ X で n重に交わることは、s ∈ V が V → Pn−1(L)⊗ k(p)の核に含
まれることと同値である。従って、点 pでの接触超平面の定義方程式は、射 V → Pd−1(L) ⊗ k(p)の核の元
である。ここで d :

def
= dimP(V )である。dimk(Pd−1(L) ⊗ k(p)) = dであるから、各点 pに対して接触超平

面が存在することがわかる。超接触超平面は V → Pd(L) ⊗ k(p)の核の元であり、超接触点のなす閉部分ス
キームは coker(VX → Pd(L))の台である。
d = 2のとき。
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