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これは平坦性の Equational Criterion などに関するノートである。このノートでは、可換環のことをたん
に環と呼ぶ。平坦加群の定義は、以下を採用する：

Definition 0.1. A を環とする。A-加群 M が平坦 (flat) であるとは、任意の単射 N1 → N2 に対して
N1 ⊗AM → N2 ⊗AM も単射であることを言う。

1 定義など
圏 C と対象 x ∈ C に対して、C/x により slice圏を表す。圏 C/x の対象は xへの C の射 y → xであり、圏

C/x の射は xへの射と可換であるような C の射である。

Definition 1.1. 圏 I が filteredであるとは、以下の条件を満たすことを言う：

(i) I 6= ∅である。
(ii) 任意の対象 i, j ∈ I に対し、対象 k ∈ I と射 i→ k, j → k が存在する。
(iii) 任意の対象 i, j ∈ I と任意の射 f, g : i→ j に対し、ある射 h : j → k が存在し、h ◦ f = h ◦ g となる。

このノートの話は、filtered categoryの定義の条件 (iii) が本質的な役割を果たす話である。

Definition 1.2. filtered category I の充満部分圏 J が cofinalであるとは、任意の対象 i ∈ I に対してある
対象 j ∈ J と I の射 i→ j が存在することを言う。

filtered categoryの cofinalな部分圏はまた filteredとなることが容易に確認できる。

2 有限表示加群
この節では有限表示加群とコンパクト性に関する Remarkをする。

Definition 2.1. Aを環、M を A-加群とする。圏 IM を以下で定める：

• 圏 IM の対象は、A-加群の射の列
F2

φ−→ F1
pφ−−→M

であり、以下を満たすものである：
(i) F1, F2 は有限ランク自由加群。
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(ii) pφ ◦ φ = 0.

圏 IM の対象はたんに φ : F2 → F1 や φのように表される。
• 二つの対象 φ : F2 → F1, φ

′ : F ′
2 → F ′

1 の間の射の集合は、

HomIM
(φ,φ′) :

def
= Hom(ModA)/M (coker(φ), coker(φ′))

と定める。

(ModA)/M の有限表示部分加群のなす充満部分圏を FP/M と置く。定義から、函手

IM → ModA, (φ : F2 → F1) 7→ coker(φ)

により IM は FP/M と圏同値となる。

Remark 2.2. 圏 IM の二つの対象 φ : F2 → F1, φ
′ : F ′

2 → F ′
1 と任意の射 f : coker(φ) → coker(φ′)に対

し、ある f2 : F2 → F ′
2, f1 : F1 → F ′

1 が存在して f は f1, f2 が余核の間に引き起こす射と一致する。証明は、
射影分解の取り方が up to quasi-isomorphism で一意的であることの証明と全く同様である。これから、圏
IM の射は二つの射 f2 : F2 → F ′

2, f1 : F1 → F ′
1 で図式

F ′
2

φ′

−−−−→ F ′
1 −−−−→ M

f2

y yf1 ∥∥∥
F2

φ−−−−→ F1 −−−−→ M

が可換となるものにより代表できる。

Lemma 2.3. 任意の環 Aと任意の A-加群M に対して IM は filteredである。

Proof. FP/M が filteredであることから従う。

Remark 2.4. 環 Aと A-加群M に対し、以下が成り立つ：

M ∼= colimN∈FP/M
N ∼= colimφ∈IM

coker(φ).

自然な射 colimN∈FP/M
→ M は明らかに全射である。単射であることは FP/M が filteredであることから従

う。特に、任意の A-加群は有限表示 A-加群の filtered colimitとして表せる。

Remark 2.5. M が有限表示加群であれば、明らかに圏 IM ∼= FP/M は終対象を持つ。

Remark 2.6. F を有限ランク自由加群とし、Ni, i ∈ I を A-加群の filteredな族とする。このとき自然な射

colimi∈I HomA(F,Ni)
∼−→ HomA(F, colimi∈I Ni)

は同型射である。従ってとくに、任意の射 F → colimi∈I Niはある i ∈ I に対する自然な射Ni → colimi∈I Ni

を経由し、また、与えられた射 F → Ni が Ni → colimi∈I Ni と合成することで 0-射となるならば、ある
Ni → Nj があって F → Ni → Nj の合成が 0-射となる。以上の議論により、任意の対象 φ ∈ Icolimi∈I Ni に
対しある i ∈ I が存在して、φは Ni → colimi∈I Ni を合成することにより定まる函手 INi

→ Icolimi∈I Ni
の

像に属する、ということがわかる。
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M を有限表示加群とすると、圏 IM は終対象を持つ (cf. Remark 2.5)。任意の射M → colimi∈I Ni に対
して、この射を合成することにより定まる函手 IM → Icolimi∈I Ni

での終対象の像は、ある i に対する函手
INi

→ Icolimi∈I Ni
の像に属する。このことは、射M → colimi∈I Ni があるNi → colimi∈I Ni を経由するこ

とを示している。従って、自然な射

colimi∈I HomA(M,Ni) → HomA(M, colimi∈I Ni)

は全射である。

Remark 2.7. M を A-加群であって、任意の A-加群の filteredな族 Ni, i ∈ I に対して自然な射

φ : colimi∈I HomA(M,Ni) → HomA(M, colimi∈I Ni)

が全射であるとする。このとき、M を有限表示 A-加群の filtered colimitとしてM ∼= colimj∈JMj と表示す
ることで、ある j が存在して id :M →M ∼= colimj∈JMj がMj → colimj∈JMj を経由する。従ってM は
有限表示加群のレトラクトとなり、有限表示であることがわかる。Remark 2.6の結果とあわせると、以下が
同値であることがわかったことになる：

(i) M は有限表示加群である。
(ii) 任意の A-加群の filteredな族 Ni, i ∈ I に対して自然な射

φ : colimi∈I HomA(M,Ni) → HomA(M, colimi∈I Ni)

は全射である。

3 テンソル積
この節ではテンソル積に関する Remarkをする。

Definition 3.1. A-加群M,N のテンソル積とは、次を満たす加群M ⊗A N のことである：任意の A-加群
Lに対して自然に

HomA(M ⊗A N,L) ∼= HomA(M,HomA(N,L))

となる。

Remark 3.2. HomA(M,HomA(N,L)) ∼= HomA(N,HomA(M,L)) であるから M ⊗A N ∼= N ⊗A M で
ある。

Remark 3.3. テンソル積の存在は次のように示される：まずM,N の一方が自由加群である場合、M ∼= A⊕I

とすれば、HomA(M,−) ∼= (−)
∏
I となるので

HomA(M,HomA(N,L)) ∼= HomA(N,L)
∏
I ∼= HomA(N

⊕I , L)

となる。つまりテンソル積 A⊕I ⊗A N は存在して自然な同型 A⊕I ⊗A N ∼= N⊕I が成り立つ。次にM,N を
任意の A-加群とする。M を自由加群の射の余核として表す。すなわち、

A⊕I → A⊕J →M → 0
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という完全列をひとつとる。HomA(−,HomA(N,L))は左完全であるから、

HomA(M,HomA(N,L)) ∼= ker(HomA(N
∏
J , L) → HomA(N

∏
I , L))

∼= HomA(coker(N
⊕I → N⊕J), L)

となることがわかる。特にテンソル積M ⊗A N は存在する。

Lemma 3.4 (cf. [後藤渡辺, 1.106]). Aを環、P を A-加群、M,N を A-加群、f : P →M ⊗A N を A-加群
の射とする。

(i) P が有限表示であるとき、有限生成部分加群 i : M0
⊂−→ M, j : N0

⊂−→ N と射 g : P → M ′ ⊗A N ′

が存在し、f = (i ⊗ j) ◦ g となる。特に、射 h1 : P → M ′ ⊗A N,h2 : P → M ⊗A N ′ が存在し、
f = (i⊗ idN ) ◦ h1, f = (idM ⊗j) ◦ h2 となる。

(ii) P が有限表示射影的であるとき、有限生成自由加群 F1, F2、射 i : F1 → M, j : F2 → N、射
g : P → F1 ⊗A F2 が存在し、f = (i⊗ j) ◦ gとなる。特に、射 h1 : P → F1 ⊗AN,h2 : P →M ⊗A F2

が存在し、f = (i⊗ idN ) ◦ h1, f = (idM ⊗j) ◦ h2 となる。

Proof. M,N を有限生成部分加群の filtered colimit として表すことで、Remark 2.7より (i) がわかる。(ii)

は (i)よりただちに従う。

Remark 3.5. Lemma 3.4 (ii) を P = Aとして適用することで、テンソル積M ⊗A N の元はすべて有限個
のmi ∈M,ni ∈ N により∑

mi ⊗ ni のように表せることがわかる。

4 平坦加群
Definition 4.1. Aを環、M を A-加群とする。0 → F1 という対象からなる IM の充満部分圏を JM と書
く。これは (ModA)/M の有限ランク自由加群のなす充満部分圏と自然に圏同値である。

IM は filtered であったが、JM は filtered とは限らない。本節ではそのことを見ていく。JM は filtered

categoryの条件 Definition 1.1 (iii) 以外を満たすことは容易にわかる (Lemma 2.3の証明と同じようにする)。

Lemma 4.2 (Equational Criterion of Flatness; cf. [松村, 定理 7.6]). Aを環、M を平坦 A-加群とする。

F2
φ−→ F1

p−→M

を圏 IM の対象とする。このとき、以下の図式が可換となるような有限自由加群 F ′ と射 f : F1 → F ′, r :

F ′ →M が存在する：
F2

φ−−−−→ F1
p−−−−→ My f

y ∥∥∥
0 −−−−→ F ′ r−−−−→ M.

特に、M が平坦であれば JM は IM において cofinalである。

Proof. 有限自由加群 F と A-加群M に対して、自然な同型M ⊗A F ∗ ∼= HomA(F,M)により両辺を同一視
する。
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φ∗ : F ∗
1 → F ∗

2 を φ の双対とし、k : ker(φ∗) → F ∗
1 を自然な包含射とする。M は平坦なので、自然な

射 M ⊗A ker(φ∗) → ker(idM ⊗φ∗) は同型射であり、特に全射である (この証明では、この射が全射であ
ることしか必要ない！ Remark 4.3も見よ)。p ◦ φ = 0 であるから p ∈ ker(idM ⊗φ∗) であり、よってあ
る元 q ∈ M ⊗A ker(φ∗) が存在して p = (idM ⊗k)(q) となる。よって、Lemma 3.4 (ii) を M = M,N =

ker(φ∗), P = A, f(1) = q ∈ M ⊗A ker(φ∗) として適用することで、ある有限ランク自由加群 F ′ と射
g : F ′∗ → ker(φ∗) が q ∈ Im(idM ⊗g) となるようにとれる。すると、ある元 r ∈ M ⊗A F ′∗ が存在し
て q = (idM ⊗g)(r) となる。自然な同型 M ⊗A F ′∗ ∼= HomA(F

′,M) のもとで r : F ′ → M と考える。
f : F1 → F ′ を合成 F ′∗ g−→ ker(φ∗) ⊂ F ∗

1 の双対とする。図式

F2
φ−−−−→ F1

p−−−−→ My f

y ∥∥∥
0 −−−−→ F ′ r−−−−→ M

は r の取り方と f∗ が ker(φ∗)を経由することから可換である。

Remark 4.3. 一般に、A-加群の射 f : N1 → N2 と A-加群 M に対して、自然な射 φ : M ⊗A ker(f) →
ker(idM ⊗f)は全射ですらない。図式

M ⊗A ker(f) −−−−→ M ⊗A N1 −−−−→ M ⊗A Im(f) −−−−→ 0.

φ

y ∥∥∥ yψ
0 −−−−→ ker(idM ⊗f) −−−−→ M ⊗A N1

idM ⊗f−−−−−→ M ⊗A N2

を見れば、coker(φ) ∼= ker(ψ)である。M が平坦でなければ ψ は一般に単射とはならないことは、平坦加群
という用語が存在することからも十分に納得できる。

Remark 4.4. Lemma 4.2をより具体的に記述すると次のようになる：M が平坦 A-加群であるとき、

aij ∈ A,mj ∈M, (1 ≤ i ≤ r, 1 ≤ j ≤ n) が∑
j aijmj = 0, (∀i)を満たす

ならば、正の整数 sと bjk ∈ A,nk ∈M, (1 ≤ j ≤ n, 1 ≤ k ≤ s) が存在して、∑
j

aijbjk = 0, (∀i, k), mj =
∑
k

bjknk, (∀j)

が成り立つ。実際、mj を与える自由加群からの射 p : An →M と aij を与える射 φ : Ar → An を取れば、条
件∑

j aijmj = 0は p ◦ φ = 0ということである。さらに Lemma 4.2から射 f : An → As, r′ : As →M が存
在して

Ar
φ−−−−→ An

p−−−−→ My f

y ∥∥∥
0 −−−−→ As

r′−−−−→ M

が可換となるが、f を与えることは bjk を与えることと等しく、r′ を与えることは nk を与えることに等しく、
f ◦ φ = 0は等式∑

j aijbjk = 0を意味し、p = r′ ◦ f は等式mj =
∑
k bjknk を意味する。

Lemma 4.5. Aを環、M を A-加群とする。このとき、次は同値：

(i) M は平坦である。
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(ii) JM は IM において cofinalである。
(iii) JM は filteredである。
(iv) JM は filteredであり、M ∼= colim(F→M)∈JM

F である。

Proof. (i) ⇒ (ii)は Lemma 4.2そのものである。(ii) ⇒ (iii)は初等的な圏論によりわかる。また、(iv) ⇒ (i)

は平坦加群の filtered colimitが平坦であることから従う。
(iii) ⇒ (iv)を確かめる。JF が filteredであると仮定する。自然な射 φ : colimF∈JM

F → M は明らかに
全射である。単射であることを示す。A → colimF∈JM

F を φの核を与える射とすると、これはある自然な
射 F → colimF∈JM

F を経由し、射 f : A → F を得る。また、A → F → M の合成は 0-射である。f と 0-

射という二つの射 JM の射 A⇒ F に JM が filteredであることの条件を使うと、ある g : F → F ′ が存在し
て g ◦ f = 0となることがわかる。従って A→ colimF∈JM

F は 0-射であり、φは単射である。以上ですべて
示された。

Corollary 4.6 (Lazardの定理). Aを環、M を A-加群とする。このときM が平坦であることと、M が有
限自由加群の filtered colimitとして表せることは同値である。

Proof. Lemma 4.5より直ちに従う。

Corollary 4.7. Aを環、M を有限表示平坦 A-加群とする。このときM は射影的である。

Proof. 有限自由加群 F2, F1 と射 F2 → F1 で

F2 → F1 →M → 0

が完全となるものを一つとる。Equational Criterionより、以下の可換図式が存在する：

F2 −−−−→ F1 −−−−→ M

f2

y yf1 ∥∥∥
0 −−−−→ F

r−−−−→ M.

ここで F は有限自由加群である。図式の可換性から r : F → M は全射である。また、(f2, f1)が余核の間に
引き起こす射M → F は r の分裂を与える。よってM は射影加群である。

Remark 4.8. 有限生成平坦加群は一般に射影的とはならない (cf. [Stacks, Tag 00NY])。

Corollary 4.9. Aを局所環、kを Aの剰余体、M を有限生成平坦 A-加群とする。このときM は自由 A-加
群である。

Proof. M は有限生成なので、有限自由加群 F1 と全射 p : F1 → M で p⊗ 1 : F1 ⊗A k → M ⊗A k が同型と
なるものが存在する。pが同型射であれば良い。有限自由加群 F2 と射 φ : F2 → F1 で p ◦ φ = 0となるもの
を任意にとる。φが 0-射であることを示せば良い。Equational Criterionより、以下の可換図式が存在する：

F2
φ−−−−→ F1

p−−−−→ My yf ∥∥∥
0 −−−−→ F

r−−−−→ M.

ここで F は有限自由加群である。図式の可換性から r は全射である。また pが全射であることと F が自由加
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群であることから、射 g : F → F1 が存在して以下の図式が可換となる：

F1
f−−−−→ F

g−−−−→ F1

p

y yr yp
M M M.

図式全体に k をテンソルして中山の補題を用いることで、g ◦ f : F1 → F1 は全射であることがわかる。F1 は
有限自由加群であるので、よって g ◦ f は同型射であり、特に f は単射であることがわかる。一方、f ◦ φ = 0

であったから、φは 0-射である。従って pは単射となる。

5 ねじれなし加群
この節はおまけみたいな感じで書いてます。

Definition 5.1. A を整域、M を A-加群とする。M がねじれなし (torsion free) であるとは、任意の元
0 6= aに対して a倍写像M →M が単射であることを言う。

Lemma 5.2. Aを整域、M を A-加群、K を Aの商体とする。以下は同値：

(i) M はねじれなしである。
(ii) 自然な包含射 A ⊂ K により引き起こされる射M →M ⊗A K は単射である。
(iii) 任意の一元生成イデアル I に対して、TorA1 (A/I,M) = 0である。
(iv) 任意の素イデアル pに対してMp はねじれなし Ap-加群である。
(v) 任意の極大イデアル mに対してMm はねじれなし Am-加群である。

Proof. (i) ⇔ (ii) ⇔ (iii) は定義より従う。局所化は平坦であるから、(ii) ⇔ (iv) が従う。(iv) ⇔ (iii) は自
明である。A-加群 ker(M →M ⊗AK)が 0かどうかは、任意の極大イデアルによる局所化で 0となるかどう
かであるから、(v) ⇔ (ii) が従う。以上ですべて示された。

Corollary 5.3. 平坦加群はねじれなし加群である。

Proof. Lemma 5.2の (i) ⇔ (iii) より従う。

Definition 5.4. 整域 Aが Prüfer整域であるとは、すべてのねじれなし加群が平坦であることを言う。

Corollary 5.5. 任意の局所環が付値環であれば Prüfer整域である。特に、Dedekind環と付値環は Prüfer

整域である。

Proof. 環 Aは任意の局所環が付値環であるとする。M を A上のねじれなし加群とする。局所化をすること
で、Aは付値環であるとしても良い。よって Aの任意の有限生成イデアルは一元生成である。従って (i) ⇔
(iii) よりM は平坦となる (cf. [アティマク, 演習 2.26])。

Proposition 5.6. Aを Prüfer整域とする。このとき任意の素イデアル pに対して Ap は付値環である。特
に、Noetherな Prüfer整域は Dedekind環となる。

Proof. Aを局所 Prüfer 整域として、Aが付値環であることを示せば良い。I を Aの有限生成イデアルとす
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る。Aが付値環であることを示すには、I が一元生成であることを示せば良い (cf. [Stacks, Tag 090Q])。I は
ねじれなし A-加群 Aの部分加群なのでねじれなしである。従って平坦である。一方、Aは局所環であり、I
は有限生成平坦加群であるので、Corollary 4.9より I は有限自由加群である。単射 I ⊂ Aの存在は、I が一
元生成であることを示している (cf. [アティマク, 演習 2.11])。
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